Picture of scraped petri dish

Scrape below the surface of Strathprints...

Explore world class Open Access research by researchers at the University of Strathclyde, a leading technological university.

Explore

The recoverability of fingerprints on paper exposed to elevated temperatures - Part 1: comparison of enhancement techniques

Dominick, Ainsley J. and NicDaeid, N. and Bleay, Stephen M. and , Home Office Scientific Development Branch, Sandridge, UK (2010) The recoverability of fingerprints on paper exposed to elevated temperatures - Part 1: comparison of enhancement techniques. Journal of Forensic Identification, 59 (3). pp. 325-339. ISSN 0895-173X

[img]
Preview
PDF (strathprints028317.pdf)
strathprints028317.pdf

Download (484kB) | Preview

Abstract

This research investigates the recoverability of fingerprints which have been exposed to elevated temperatures in order to mimic the environment a piece of paper may be exposed to within an arson scene. Arson is an expensive crime, costing the UK economy, on average, £53.8 million each week [1]. Anything which may give rise to the identity of the fire setter should be analysed and as such, unburnt paper may be a potential source of fingerprints. While it is true that even a moderate fire will obscure and render partially useless some types of evidence, many items, including fingerprints, may still survive [2-4]. This research has shown that fingerprints are still retrievable from paper which has been subjected to the maximum testing conditions of 200˚C for 320min. In fact, some fingerprints naturally enhance themselves by the heating process. This investigation has also shown that the most effective enhancement technique was found to be 1,8-diazafluoren-9-one (DFO) for exposure temperatures upto 100˚C. Physical developer (PD) is the most effective enhancement technique for exposure temperatures from 100˚C to 200˚C. For porous surfaces, there are fingerprint development techniques which are effective at enhancing fingerprints exposed upto a temperature of 200˚C, irrespective of the firefighting extinguishing technique, as PD, in addition to developing fingerprints exposed to high temperatures, is one of the few processes which will enhance fingermarks on wetted surfaces.