Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Anstreicher-Terlaky type monotonic simplex algorithms for linear feasibility problems

Bilen, F. and Csizmadia, Zsolt and Illes, T. (2007) Anstreicher-Terlaky type monotonic simplex algorithms for linear feasibility problems. Optimization Methods and Software, 22 (4). pp. 679-695. ISSN 1055-6788

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Based on the pivot selection rule [Anstreicher, K.M. and Terlaky, T., 1994, A monotonic build-up simplex algorithm for linear programming. Operations Research, 42, 556-561.] we define a new monotonic build-up (MBU) simplex algorithm for linear feasibility problems. An mK upper bound for the iteration bound of our algorithm is given under a weak non-degeneracy assumption, where K is determined by the input data of the problem and m is the number of constraints. The constant K cannot be bounded in general by a polynomial of the bit length of the input data since it is related to the determinants (of the pivot tableau) with the highest absolute value. An interesting local property of degeneracy led us to construct a new recursive procedure to handle strongly degenerate problems as well. Analogous complexity bounds for the linear programming versions of MBU and the first phase of the simplex method can be proved under our weak non-degeneracy assumption.