Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Unconventional ferroelectric behavior in nanosegregating liquid crystals with de Vries-like behavior

Nonnenmacher, D. and Osipov, M.A. and Roberts, J.C. and Lemieux, R.C. and Giesseimann, F. (2010) Unconventional ferroelectric behavior in nanosegregating liquid crystals with de Vries-like behavior. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 83 (3). 031703. ISSN 1063-651X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Two nanosegregating siloxane-terminated mesogens with chiral (S,S)-2,3-epoxyoctyloxy side chains (E6, E11 )have been synthesized. These compounds form chiral SmA∗ and SmC∗ phases and show an untypical behavior of the spontaneous polarization which increases with decreasing temperature in a convex manner while the tilt angle saturates. We compare these results with results obtained for two similar mesogens with chiral (R,R)-2,3-difluorooctyloxy side chains (F6, F11), which both show a typical concave curvature with decreasing temperature. A theoretical explanation is given for the unexpected temperature dependency of the spontaneous polarization. The materials also exhibited first-order SmC∗-SmA∗ phase transitions and hence, very high values of the tilt angle. All substances show increased de Vries character in the range of 50%, which is substantially higher than 20% for the nonsiloxane analogs. Furthermore, for the latter materials, second-order phase transitions are common, while the siloxane materials exhibit first-order SmA∗-SmC∗ phase transitions. These results clearly suggest that the achievement of nanosegregation is a powerful tool to induce de Vries behavior and to promote first-order SmA∗-SmC∗ phase transitions.