Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Bayesian Multivariate Time Series Methods for Empirical Macroeconomics

Koop, Gary and Korobilis, D. (2010) Bayesian Multivariate Time Series Methods for Empirical Macroeconomics. Foundations and Trends in Econometrics, 3 (4). pp. 267-358. ISSN 1551-3076

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Macroeconomic practitioners frequently work with multivariate time series models such as VARs, factor augmented VARs as well as timevarying parameter versions of these models (including variants with multivariate stochastic volatility). These models have a large number of parameters and, thus, over-parameterization problems may arise. Bayesian methods have become increasingly popular as a way of overcoming these problems. In this monograph, we discuss VARs, factor augmented VARs and time-varying parameter extensions and show how Bayesian inference proceeds. Apart from the simplest of VARs, Bayesian inference requires the use of Markov chain Monte Carlo methods developed for state space models and we describe these algorithms. The focus is on the empirical macroeconomist and we offer advice on how to use these models and methods in practice and include empirical illustrations. A website provides Matlab code for carrying out Bayesian inference in these models.