Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Defect trajectories and domain-wall loop dynamics during two-frequency switching in a bistable azimuthal nematic device

Davidson, A.J. and Brown, C.V. and Mottram, N.J. and Ladak, S. and Evans, C.R. (2010) Defect trajectories and domain-wall loop dynamics during two-frequency switching in a bistable azimuthal nematic device. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 81 (5). ISSN 1063-651X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Bistable azimuthal nematic alignment textures have been created in micrometer-scale channels for which one sidewall is smooth and straight and the other possesses a symmetric sawtooth morphology. The optical textures have been observed during dynamic switching between the two stable states in response to dual frequency ac waveform driving of a highly dispersive nematic liquid crystal. The switching processes involves collapsing of filamentlike director reorientation (tilt-wall) loops and the associated motion and annihilation of surface defects along and close to the edge at the sawtooth sidewall. The predictions from both the n-director-based Ericksen-Leslie theory and the Q-tensor theory are in good agreement with the experimental observations