Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Optimally blended spectral-finite element scheme for wave propagation and nonstandard reduced integration

Ainsworth, M. and Wajid, Hafiz Abdul (2010) Optimally blended spectral-finite element scheme for wave propagation and nonstandard reduced integration. SIAM Journal on Numerical Analysis, 48 (1). pp. 346-371. ISSN 0036-1429

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We study the dispersion and dissipation of the numerical scheme obtained by taking a weighted averaging of the consistent (finite element) mass matrix and lumped (spectral element) mass matrix for the small wave number limit. We find and prove that for the optimum blending the resulting scheme (a) provides $2p+4$ order accuracy for $p$th order method (two orders more accurate compared with finite and spectral element schemes); (b) has an absolute accuracy which is $\mathcal{O}(p^{-3})$ and $\mathcal{O}(p^{-2})$ times better than that of the pure finite and spectral element schemes, respectively; (c) tends to exhibit phase lag. Moreover, we show that the optimally blended scheme can be efficiently implemented merely by replacing the usual Gaussian quadrature rule used to assemble the mass and stiffness matrices by novel nonstandard quadrature rules which are also derived.