Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Optimally blended spectral-finite element scheme for wave propagation and nonstandard reduced integration

Ainsworth, M. and Wajid, Hafiz Abdul (2010) Optimally blended spectral-finite element scheme for wave propagation and nonstandard reduced integration. SIAM Journal on Numerical Analysis, 48 (1). pp. 346-371. ISSN 0036-1429

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We study the dispersion and dissipation of the numerical scheme obtained by taking a weighted averaging of the consistent (finite element) mass matrix and lumped (spectral element) mass matrix for the small wave number limit. We find and prove that for the optimum blending the resulting scheme (a) provides $2p+4$ order accuracy for $p$th order method (two orders more accurate compared with finite and spectral element schemes); (b) has an absolute accuracy which is $\mathcal{O}(p^{-3})$ and $\mathcal{O}(p^{-2})$ times better than that of the pure finite and spectral element schemes, respectively; (c) tends to exhibit phase lag. Moreover, we show that the optimally blended scheme can be efficiently implemented merely by replacing the usual Gaussian quadrature rule used to assemble the mass and stiffness matrices by novel nonstandard quadrature rules which are also derived.