Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Optimally blended spectral-finite element scheme for wave propagation and nonstandard reduced integration

Ainsworth, M. and Wajid, Hafiz Abdul (2010) Optimally blended spectral-finite element scheme for wave propagation and nonstandard reduced integration. SIAM Journal on Numerical Analysis, 48 (1). pp. 346-371. ISSN 0036-1429

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We study the dispersion and dissipation of the numerical scheme obtained by taking a weighted averaging of the consistent (finite element) mass matrix and lumped (spectral element) mass matrix for the small wave number limit. We find and prove that for the optimum blending the resulting scheme (a) provides $2p+4$ order accuracy for $p$th order method (two orders more accurate compared with finite and spectral element schemes); (b) has an absolute accuracy which is $\mathcal{O}(p^{-3})$ and $\mathcal{O}(p^{-2})$ times better than that of the pure finite and spectral element schemes, respectively; (c) tends to exhibit phase lag. Moreover, we show that the optimally blended scheme can be efficiently implemented merely by replacing the usual Gaussian quadrature rule used to assemble the mass and stiffness matrices by novel nonstandard quadrature rules which are also derived.

Item type: Article
ID code: 28107
Keywords: numerical dispersion, numerical dissipation, high order numerical wave propagation, Mathematics, Numerical Analysis
Subjects: Science > Mathematics
Department: Faculty of Science > Mathematics and Statistics
Related URLs:
Depositing user: Mrs Carolynne Westwood
Date Deposited: 13 Oct 2010 14:28
Last modified: 27 Mar 2014 09:05
URI: http://strathprints.strath.ac.uk/id/eprint/28107

Actions (login required)

View Item