Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Fully computable error bounds for discontinuous Galerkin finite element approximations on meshes with an arbitrary number of levels of hanging nodes

Ainsworth, M. and Rankin, R. (2010) Fully computable error bounds for discontinuous Galerkin finite element approximations on meshes with an arbitrary number of levels of hanging nodes. SIAM Journal on Numerical Analysis, 47 (6). pp. 4112-4141. ISSN 0036-1429

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We obtain fully computable a posteriori error bounds on the broken energy seminorm and discontinuous Galerkin norm (DG-norm) of the error in first order symmetric interior penalty Galerkin (SIPG), nonsymmetric interior penalty Galerkin (NIPG), and incomplete interior penalty Galerkin (IIPG) finite element approximations of a linear second order elliptic problem on meshes containing an arbitrary number of levels of hanging nodes and comprised of triangular elements. The estimators are completely free of unknown constants and provide guaranteed numerical bounds on the broken energy seminorm and DG-norm of the error. These estimators are also shown to provide a lower bound for the broken energy seminorm and DG-norm of the error up to a constant and higher order data oscillation terms. We also obtain an explicit computable bound for the value of the interior penalty parameter needed to ensure the existence of the discontinuous Galerkin finite element approximation for all versions of the method.