Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

High expression of sphingosine 1-phosphate receptors, S1P1 and S1P3, sphingosine kinase 1, and extracellular signal-regulated kinase-1/2 is associated with development of tamoxifen resistance in estrogen receptor-positive breast cancer patients

Watson, C. and Long, J.S. and Orange, C. and Tannahill, C.L. and Mallon, E. and McGlynn, L.M. and Pyne, S. and Pyne, N.J. and Edwards, J. (2010) High expression of sphingosine 1-phosphate receptors, S1P1 and S1P3, sphingosine kinase 1, and extracellular signal-regulated kinase-1/2 is associated with development of tamoxifen resistance in estrogen receptor-positive breast cancer patients. American Journal of Pathology, 177 (5). pp. 2205-2215. ISSN 0002-9440

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Various studies in cell lines have previously demonstrated that sphingosine kinase 1 (SK1) and extracellular signal-regulated kinase 1/2 (ERK-1/2) interact in an estrogen receptor (ER)-dependent manner to influence both breast cancer cell growth and migration. A cohort of 304 ER-positive breast cancer patients was used to investigate the prognostic significance of sphingosine 1-phosphate (S1P) receptors 1, 2, and 3 (ie, S1P1, S1P2, and S1P3), SK1, and ERK-1/2 expression levels. Expression levels of both SK1 and ERK-1/2 were already available for the cohort, and S1P1, S1P2, and S1P3 levels were established by immunohistochemical analysis. High membrane S1P1 expression was associated with shorter time to recurrence (P = 0.008). High cytoplasmic S1P1 and S1P3 expression levels were also associated with shorter disease-specific survival times (P = 0.036 and P = 0.019, respectively). Those patients with tumors that expressed high levels of both cytoplasmic SK1 and ERK-1/2 had significantly shorter recurrence times than those that expressed low levels of cytoplasmic SK1 and cytoplasmic ERK-1/2 (P = 0.00008), with a difference in recurrence time of 10.5 years. Similarly, high cytoplasmic S1P1 and cytoplasmic ERK-1/2 expression levels (P = 0.004) and high cytoplasmic S1P3 expression and cytoplasmic ERK-1/2 expression levels (P = 0.004) were associated with shorter recurrence times. These results support a model in which the interaction between SK1, S1P1, and/or S1P3 and ERK-1/2 might drive breast cancer progression, and these findings, therefore, warrant further investigation.