Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

The fluid to solid phase transition of hard hyperspheres in four and five dimensions

Lue, L. and Bishop, Marvin and Whitlock, Paula A. (2010) The fluid to solid phase transition of hard hyperspheres in four and five dimensions. Journal of Chemical Physics, 132 (10). p. 104509. ISSN 0021-9606

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Molecular dynamics and Monte Carlo simulations are performed for four- and five-dimensional hard hyperspheres at a variety of densities, ranging from the fluid state to the solid regime of A(4), D-4, D-4(*), and D-5 lattices. The equation of state, the radial distribution functions, and the average number of hyperspheres in a coordination layer are determined. The equations of state are in excellent agreement with values obtained from both theoretical approaches and other simulations. The results for the average number of hyperspheres in a coordination layer are in agreement with the theoretical predictions for the different lattices. The radial distribution function gives better insight about the fluid to solid transition than the equation of state.