Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Molecular dynamics study of the thermodynamics and transport coefficients of hard hyperspheres in six and seven dimensions

Lue, L. and Bishop, Marvin (2006) Molecular dynamics study of the thermodynamics and transport coefficients of hard hyperspheres in six and seven dimensions. Physical Review E, 74 (2). ISSN 1539-3755

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Molecular dynamics (MD) simulations are performed for six- and seven-dimensional hard-hypersphere fluids. The equation of state, velocity autocorrelation function, self-diffusion coefficient, shear viscosity, and thermal conductivity are determined as a function of density. The molecular dynamics results for the equation of state are found to be in excellent agreement with values obtained from theoretical approaches and previous MD simulations in seven dimensions. The short-time behavior of the velocity autocorrelation function is well described by the Enskog exponential approximation. The Enskog predictions for the self-diffusion coefficient and the viscosity agree fairly well with the simulation data at low densities, but underestimate these quantities at higher densities. Data for the thermal conductivity are in fine agreement with Enskog theory for all densities and dimensions studied.