Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

A variational field theory for solutions of charged, rigid particles

Lue, L. (2006) A variational field theory for solutions of charged, rigid particles. Fluid Phase Equilibria, 241 (1-2). pp. 236-247. ISSN 0378-3812

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A general field theoretic formalism is developed for dealing with solutions of particles with rigid charge distributions. Combined with the mean-field approximation, the resulting theory extends the Poisson-Boltzmann equation to incorporate the presence of structured ions (e.g., uniformly charged rods or disks). When combined with a first-order variational approximation, the resulting theory, in the low density limit, is a generalization of the Debye-Huckel theory to extended charge distributions and reduces to the standard expressions when applied to point charges. A first-order variational theory is applied to solutions of uniformly charged disks and to solutions of uniformly charged disks with a neutralizing ring charge to examine the influence of electrostatic interactions on the isotropic-nematic transition.