Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Viscous froth model for a bubble staircase structure under rapid applied shear : an analysis of fast flowing foam

Green, T. E. and Grassia, P. and Lue, L. and Embley, B. (2009) Viscous froth model for a bubble staircase structure under rapid applied shear : an analysis of fast flowing foam. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 348 (1-3). pp. 49-58. ISSN 0927-7757

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The viscous froth model is applied to the rapid shear of '2-dimensional', dry foams for bubbles confined in a monolayer and arranged in an ordered staircase configuration that forms part of a hexagonal honeycomb Structure. High system energies are attained as particular films in the staircase become highly elongated under shear. Topological transformations during which bubbles exchange neighbours can relax the staircase energy, but their onset is postponed at high shear rates. Moreover as the imposed shear rate increases, the rate at which topological transformations subsequently occur cannot keep pace with the imposed shear, and secular film stretching onsets. A critical capillary number (a dimension less measure of shear rate) separates a regime where film lengths are periodic functions of imposed strain from a regime of secular growth.