Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Diode laser spectroscopy using a calibration free phasor decomposition approach to RAM nulling

Ruxton, Keith C. and Chakraborty, Arup Lal and McGettrick, A.J. and Duffin, K. and Johnstone, W. and Stewart, G. (2009) Diode laser spectroscopy using a calibration free phasor decomposition approach to RAM nulling. In: 7th International Conference on Tunable Diode Laser Spectroscopy, 2009-07-13 - 2009-07-17.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Tunable diode laser spectroscopy (TDLS) detection schemes have been widely investigated [1,2] in the near-IR due to the presence of overtone absorption lines in the species of interest and the availability of lasers which operate in the region. However, overtone lines are much weaker than their fundamental absorption line counterparts which, for many species, lie in the Mid-IR. Traditionally the 3-5μm wavelength region has been addressed by lead-salt lasers, but this technology does not lend itself easily to the implementation of TDLS modulation schemes. This paper presents an investigation of TDLS measurements using a system based on difference frequency generation (DFG), in periodically poled lithium niobate (PPLN), which has been used to address fundamental absorption lines of methane (CH4) in the 3.4μm region.