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Most plausible futures for space exploration and exploitation require a large mass in Earth orbit. Delivering this 

mass requires overcoming the Earth’s natural gravity well, which imposes a distinct obstacle to any future space 
venture. An alternative solution is to search for more accessible resources elsewhere. In particular, this paper 
examines the possibility of future utilisation of near Earth asteroid resources. The accessibility of asteroid material 
can be estimated by analysing the volume of Keplerian orbital element space from which Earth can be reached under 
a certain energy threshold and then by mapping this analysis onto an existing statistical near Earth asteroid (NEA) 
model. Earth is reached through orbital transfers defined by a series of impulsive manoeuvres and computed using 
the patched-conic approximation. The NEA model allows an estimation of the probability of finding an object that 
could be transferred with a given ∆v budget. For the first time, a resource map provides a realistic assessment of the 
mass of material resources in  near Earth space as a function of energy investment. The results show that there is a 
considerable mass of resources that can be accessed and exploited at relatively low levels of energy. More 
importantly, asteroid resources can be accessed with a entire spectrum of levels of energy, unlike other more massive 
bodies such as the  Earth or Moon, which require a minimum energy threshold implicit in their gravity well.  With 
this resource map, the total change of velocity required to capture an asteroid, or transfer its resources to Earth, can 
be estimated as a function of object size. Thus, realistic examples of asteroid resource utilisation can be provided. 

 
 

ost of the plausible futures for human space 
exploration and exploitation involve a large 

increase of mass in Earth orbit. Some examples include 
space solar power, space tourism or more visionary 
human space settlements. Whether this mass is water for 
crew, propellant for propulsion or materials for 
structures, these resources will require overcoming 
Earth’s natural gravity well to be delivered in space. 
Thus, even if technologically possible, this will 
certainly put a large economic burden on future space 
progress. An alternative to this approach is to search 
among the population of asteroids in search of the 
required reservoir of material[1-2]. 
 Asteroids are of importance in uncovering the 
formation, evolution and composition of the solar 
system. In particular, near Earth asteroids (NEA) have 
risen in prominence because of two important points: 
they are among the easiest celestial bodies to reach from 
the Earth and they may represent a long-term threat[3]. 
The growing interest in these objects has translated into 
an increasing number of missions to NEA, such as the 
sample return missions Hayabusa[4] and Marco Polo[5], 
impactor missions such as Deep Impact* and possible 
deflector demonstrator missions such as Don Quixote†. 

                                                           
*http://www.nasa.gov/mission_pages/deepimpact/ma

in/index.html 
†http://www.esa.int/SPECIALS/NEO/SEMZRZNV

GJE_0.html 

 With regard to asteroid deflection, a range of 
methods have been identified to provide a change in the 
asteroid linear momentum[6]. Some of these methods, 
such as the kinetic impactor have been deemed to have a 
high technology readiness level (TRL), while others 
may require considerable development. If the capability 
to impact an asteroid exists (e.g., Deep Impact), or if the 
capability to deflect an asteroid is available in the near 
future, a resource-rich asteroid could in principle be 
manoeuvred and captured into a bound Earth orbit 
through judicious use of orbital dynamics. On the other 
hand, if direct transfer of the entire NEA is not possible, 
or necessary, extracted resources could also be 
transferred to a bound Earth orbit for utilisation. It is 
envisaged that NEA could also be ‘shepherded’ into 
easily accessible orbits to provide future resources. 
 The main advantage of asteroid resources is that the 
gravity well from which materials would be extracted is 
much weaker than that of the Earth or the Moon. Thus, 
these resources could in principle be placed in a weakly-
bound Earth orbit for a lower energy cost than material 
delivered from the surface of the Earth or Moon. The 
question that arises then is how much near-Earth 
asteroid material is there which can be captured with a 
modest investment of energy. This paper will attempt to 
answer this question by analysing the volume of 
Keplerian orbital element space from which Earth can 
be reached under a certain limit of orbital transfer 
energy and then mapping this analysis to the near Earth 
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asteroid population. The resulting resource map 
provides an accurate assessment of the real material 
resources of near Earth space as a function of energy 
investment. It will be shown that there are substantial 
materials resources available at low energy based on the 
statistical distribution of near Earth asteroids.    
 The population of near-Earth objects is modelled in 
this paper by means of an object size distribution 
together with an orbital element distribution function. 
The size distribution is defined via a power law 
relationship between the asteroid diameter and the total 
number of asteroids with size lower than this 
diameter[7]. On the other hand, the orbital distribution 
used in this paper will rely on Bottke et al.[8] asteroid 
model to estimate the probability to find an object with 
a given set of Keplerian elements.  

The dynamic model used to study the Keplerian 
orbital element space {a,e,i} of asteroid-to-Earth 
transfers assumes a circular Earth orbit with a 1 AU 
semi-major axis. The Sun is the central body for the 
motion of the asteroid, and the Earth’s gravity is only 
considered when the NEA motion is in close proximity. 
Since the orbital transfers will be modelled as a series of 
impulsive changes of velocity, for some conditions, 
analytical formulae relate the total change of velocity 
with the region of Keplerian space that can be reached. 

Two different transfer models are included in this 
paper. Firstly, a phase-free two-impulse transfer, which 
is composed of a change of plane manoeuvre and a 
perigee capture manoeuvre at Earth encounter. This 
transfer, as with a Hohmann transfer analysis, provides 
a good conservative estimate of the exploitable asteroid 
material.  Secondly, a phase-free one-impulse transfer, 
which only considers a perigee capture manoeuvre 
during the Earth fly-by. In this second case, only orbits 
that have initially very low Minimum Orbital 
Intersection Distances (MOID) can be captured. The 
MOID is the minimum possible distance between the 
Earth and the asteroid considering free-phasing for both 
objects. Finally, an estimation of the phasing manoeuvre 
required to meet the Earth at the orbital intersections 
will also be included on the transfer sequence. 

II. NEAR EARTH ASTEROIDS 
By convention, a celestial body is considered a Near 

Earth Object (NEO) if its perihelion is smaller than 1.3 
AU and its aphelion is larger than 0.983 AU.  This is a 
very broad definition which includes predominantly 
asteroids, but also a small percentage of comets. NEOs 
are then the closest celestial objects to the Earth and 
therefore the obvious first targets for any resource 
exploitation mission (excluding the Moon).   

The first NEA (Near-Earth Asteroid) was discovered 
in 1898 (433 Eros) and since then more than 7000 
asteroids have been added to the NEO catalogue. Most 
of these objects have been surveyed during the last 20 
years as a consequence of the general recognition of the 
impact threat that these objects pose to Earth [9]. This 
recognition led to a series of efforts to catalogue 90% of 
objects with the potential to pose a global environmental 
threat [10] (i.e., Diameter>1km). Subsequent 
recommendations suggested to pursue 90% 
completeness of the census of 140-m objects by 2020 
[7]. The new generation of surveys such as LSST [11] 
or Pan-STARRS [12] are well positioned to achieve this 
objective. 

Together with the ever-growing catalogue of 
asteroids, the understanding of the origin and evolution 
of these objects has seen enormous advancements in 
recent years [13]. Still, it is not possible to know 
accurately the amount and characteristics of asteroid 
exploitable resources. However, reliable order of 
magnitude estimates may now provide some insight 
concerning the feasibility of future space resource 
exploitation and utilisation concepts (e.g., space-based 
climate engineering[14]).   

In order to determine near-Earth resource 
availability, a sound statistical model of the near Earth 
asteroid population is required. The following sections 
will describe an asteroid model of the fidelity necessary 
to allow the order of magnitude analysis. The asteroid 
model described is composed of two parts; a size 
population model, which describes the net number of 
asteroids as a function of object size and an orbit 
distribution model that describes the likelihood that an 
asteroid will be found in a given region of orbital 
element space.     

II.I Near Earth Asteroid Population 
The NEA size distribution is taken from the Near-

Earth Object Science Definition report[7]. It is based on 
the results of a substantial number of studies estimating 
the population of different ranges of object sizes by a 
number of techniques (see  

Fig. 1 taken from Stokes et al. [7]). The Near-Earth 
Object Science Definition report provides an 
accumulative population of asteroids that can be 
expressed as a constant power law distribution function 
of object diameter as: 

 ( [ ]) bN D km CD   (1) 

where 942C   and  2 .354b  [7]. This constant power 
law distribution assumes that the average 1-km diameter 
object has an absolute magnitude H=17.75.  
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Fig. 1: Accumulative size distribution of Near Earth 
Objects (from Stokes et al. [7]). 

Assuming a population of asteroids defined by a 
power law distribution such as Eq.(1), one can easily 
calculate the total number of objects within an upper 
and lower diameter range: 

    min max min max
b bN D D D C D D       (2) 

where Dmax and Dmin are the maximum and minimum 
diameter chosen. An estimation of the total asteroid 
mass composed by all these objects can also be 
computed. To do so, the following integration needs to 
be performed: 

  
min

max min

max

[ ] [ ]
D

D

N

N

D D D kmM m dN    (3) 

where m is the mass of the asteroid and 
minDN and 

maxDN are the number of objects bigger than Dmin and 

Dmax respectively.  
Assuming that all asteroids have a spherical shape 

and an average density a , the mass m of the asteroid 

can be defined by   36 a D    and the integration can 

be defined as an integration over the asteroid diameter: 

 
min

max min

max

3

[ ] 6 a

D

D D
D

dN
D dD

dD
M        (4) 

where dN dD  is the derivative of Eq.(1) with respect 

the diameter D. Integrating Eq.(4), the total mass of 
asteroid material composed of asteroids with diameters 
between Dmax and Dmin results in: 

 
max min

3 3
max min

[ ] 6 3

b b
a

D D
C b D D

b
M

   


    
 

 
  (5) 

The average asteroid density a can be approximated 

as 2600 kg/m3 (ref.[15]). Thus, for example, Eq.(5) can 
yield the total mass of “Tunguska” size objects (i.e., 

from 50 m to 70 m diameter) in near Earth space as 
being in the order of 1014 kg[16]. More recent estimates 
of the population of small asteroids [10] seem to 
indicate a possible drop by a factor of 2/3 on the 
estimations given by Eq.(1) for small objects between 
10 to 500 meters diameter. Final results and discussion 
will also account for this possibility. 

Finally, if the maximum diameter is set equal to the 
largest near Earth object known, 1036 Ganymed, which 
is 32 km in diameter and the minimum object size is set 
at 1 meters diameter, then Eq. (5) yields a total mass of 
4.38x1016 kg. Note that the mass of a 32-km diameter 
spherical object with a density of 2600 kg/m3 is already 
higher than the estimation yielded by Eq.(5). The reason 
for this is that the power law distribution (1) 
underestimates the number of large objects existing. 
Nevertheless, this result will be taken as the estimated 
total mass of asteroid material available in near Earth 
orbit space. Now, it is necessary to define the energy 
requirements for transporting this material to Earth orbit 
in order to draw conclusions concerning practical 
resource availability. 

II.II Near Earth Asteroid Orbital Distribution 
This section describes the NEA orbital distribution 

model used to estimate the likelihood of finding an 
asteroid within a given volume of Keplerian orbital 
element space  , , , , ,a e i M      . This 

likelihood can also be interpreted as the fraction of 
asteroids within the specified region of the Keplerian 
space, and thus, if multiplied by Eq.(5), results in the 
portion of asteroid mass within that region. Hence, the 
ability to calculate this likelihood, together with the 
ability to define the regions of the Keplerian space from 
which the Earth can be reached with a given ∆v budget, 
will later allow us to compute the asteroid resources 
available in near-Earth space.  

The NEA orbital distribution used here is based on 
an interpolation from the theoretical distribution model 
published in Bottke et al.[8]. The data used was very 
kindly provided by W.F. Bottke (personal 
communication, 2009). Bottke et al.[8] built an orbital 
distribution of NEA by propagating in time thousands of 
test bodies initially located at all the main source 
regions of asteroids (i.e., the ν6 resonance, intermediate 
source Mars-crossers, the 3:1 resonance, the outer main 
belt, and the trans-Neptunian disk). By using the set of 
asteroids discovered by Spacewatch at that time, the 
relative importance of the different asteroid sources 
could be best-fitted. This procedure yielded a steady 
state population of near Earth objects from which an 
orbital distribution as a function of semi-major axis a, 
eccentricity e and inclination i can be interpolated 
numerically.  

The remaining three Keplerian elements, the right 
ascension of the ascending node Ω, the argument of 
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periapsis ω and the mean anomaly M, are assumed here 
to be uniformly distributed random variables. The 
ascending node Ω and the argument of periapsis ω are 
generally believed to be uniformly distributed in near 
Earth orbit space[17] as a consequence of the fact that 
the period of the secular evolution of these two angles is 
expected to be much shorter than the life-span of a near 
Earth object[18]. Therefore, we can assume that any 
value of Ω and ω is equally possible for any NEA. All 
values of mean anomaly M are also assumed to be 
equally possible, and thus M is also uniformly 
distributed between 0 to 2π.  

A probability density function  , ,a e i  has been 

created by linearly interpolating a 3-dimensional set of 
data containing the probability density at semi-major 
axes ranging from 0.05 to 7.35 AU with a partition step 
size of 0.1 AU, eccentricity ranging from 0.025 to 0.975 
with a partition step of 0.05 and inclination ranging 
from 2.5 to 87.5 deg with a partition step of 5 deg. 
When  , ,a e i

 
requires a value outside the given grid 

of points (e.g., inclination less than 2.5 degrees) then a 
nearest neighbour extrapolation is used for the 
dependence on semi-major axis and eccentricity, while a 
linear extrapolation is used for the dependence on 
inclination. Fig. 2 shows both the  , ,a e i projected in 

the {a,e} plane and the Aten, Apollo and Amor regions. 
 

 
Fig. 2: Bottke et al.[8] probability distribution built as 

an interpolation from the model data projected in the 
{a,e} plane. 

Finally, an integration such as: 

  max max max

min min min

, ,
a e i

a e i
P a e i di de da       (6) 

will then yield the probability of finding an asteroid 
within the Keplerian elements defined by max min[ , ]a a , 

max min[ , ]e e  and max min[ , ]i i .  Section III will later 

describe how these limits can be defined as a function of 
the delta-velocity budget for different transfer types. 

III. ASTEROID MATERIAL TRANSFER 
This section will now describe the methodology 

followed to estimate the cost of transporting asteroid 

material to Earth. Two different scenarios are 
envisaged; the transport of mined material and the 
transport of the entire asteroid. The first scenario, the 
transport of mined material, requires less energy to 
transport resources, since less mass is transported to 
Earth orbit, while requires that the mining operations 
occur in-situ. The latter requirement results in either 
very long duration manned missions, with the 
complexity that this entails, or, if the mining is 
performed robotically, the need for advanced 
autonomous systems due to both the communication 
delay between asteroid and Earth and the complexity of 
mining operations. The second scenario, on the other 
hand, requires moving a large mass, with the difficulty 
that this involves, but allows a more flexible mining on 
the Earth’s neighbourhood. The ultimate optimality of 
these two scenarios would depend on each particular 
asteroid (i.e., size and particular resources) and the 
future development of the key technologies required for 
such missions.  

The analysis presented here focuses on the use of ∆v 
as a figure of merit (FoM) for the transport cost. This is 
also a measure of the specific energy, i.e., energy per 
unit of mass, required to transport material to Earth and, 
therefore the two envisaged transportation scenarios can 
benefit from the same FoM to draw conclusions about 
the feasibility of a mission. 

This section will first describe the two transfer 
models used. The first transfer assumes a two-impulse 
trajectory, which includes a change of plane and Earth 
insertion manoeuvre. While any Earth-crossing asteroid 
can be transferred to Earth using these two manoeuvres, 
some asteroids have orientations such that they can 
easily fly-by the Earth with an almost negligible phasing 
manoeuvre (i.e., asteroids with very low MOID). These 
objects could be captured with one single impulsive 
manoeuvre during the Earth passage. These two transfer 
models will be defined by using a patched conic 
approximation, thus, the motion of the asteroid, or any 
material resources extracted, would be dominated by the 
gravitational influence of the Sun, except when in a very 
close encounter with the Earth. The Earth is also 
assumed to be in a circular orbit with radius 1 AU. 

The transfer models are described as phase-free 
transfers. This means that the real orbital position is not 
taken into account, but only the geometry of the orbits is 
considered. Clearly, in order for an asteroid to meet the 
Earth during its orbital motion, not only the MOID must 
be very small (i.e., geometric consideration), but also 
Earth and asteroid must be found in a very specific 
location within their orbital paths. Thus, an additional 
manoeuvre will finally be considered in order to provide 
the gentle push necessary to render the required phasing 
at the MOID.  
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III.II Two-impulse transfer 
The first impulsive manoeuvre in this capture 

sequence provides the change of plane necessary to 
make the asteroid orbit coplanar with the Earth. Using a 
more complex and realistic sequence of manoeuvres, a 
single combined manoeuvre could provide both the 
required phasing and the change of plane such that an 
Earth flyby occurs. In that case, the asteroid transfer to 
Earth would not need to be strictly coplanar with the 
Earth and the change of velocity necessary for the 
manoeuvre would be minimised. Unfortunately, this 
procedure would require a full numerical optimisation 
for each individual case, which would be unmanageable 
for the scope of this paper.  

A simpler approach is to consider a change of plane 
manoeuvre such as: 

 2 sin( )
2inc plX

i
v v


    (7) 

where incv is the impulsive change of velocity 

necessary to change the orbital plane by ∆i, and plXv is 

the velocity of the asteroid at the Earth-orbital plane 
crossing. After the incv manoeuvre, the magnitude of 

the orbital velocity plXv
 

remains the same, only the 

inclination of the orbit has changed. Equation (7) allows 
a more analytical approach to the problem and at the 
same time provides a worst case scenario for the cost of 
the change of plane.   

Coplanar motion 

 
Fig. 3: Orbital geometry of the coplanar model. 

As shown in Fig. 3, an Earth-crossing coplanar 
asteroid has two intersections (points of MOID equal 0) 
with the Earth’s orbit. These are found when the 
asteroid is at 1 AU from the Sun. Since the distance r 
from the Sun to the asteroid is known, the equation of 
the orbit in polar coordinates yields the true anomaly of 
the two encounters θenc: 

 1 1
cos

enc

p

e
  

   
 
 

      (8) 

where 2(1 )p a e   is the asteroid’s semi-latus rectum 

and the unit length in Eq.(8), and any of the following 
formulas in this paper, has been normalized to 1 AU.   

With the true anomaly of the encounter θenc known, 
the velocity at the encounter can now be defined by 
using the normal and radial components of Keplerian 
orbital motion: 

  sinenc Sun

r enc
v e

p


  (9) 

   1 cosenc Sun

n enc
v e

p


   (10) 

where  
enc

r
v  and  

enc

n
v are the radial and normal velocity 

at the MOID point. Using Eq. (8) and Eqs.(9)-(10), the 
encounter velocity can be rewritten in a more suitable 
form: 

   22 1enc Sun

r
v e p

p


    (11) 

 enc

n Sun
v p  (12) 

Whenever the Earth-coplanar asteroid meets the 
Earth at θenc, the velocity of the asteroid relative to the 

Earth will then be  ,enc enc

r n enc
v v r   with the Earth 

moving at an angular velocity 
Sun

 

 . This Earth 

encounter conditions will result on a hyperbolic motion 
of the asteroid relative to the Earth with an excess 
velocity as: 

  13 2Sunv p
a



    (13) 

Final Earth insertion 
If MOID is zero or almost zero, the Earth encounter 

could be easily tuned by a phasing manoeuvre so that 
the altitude during the Earth fly-by is some given 
minimum distance (chosen here to be 200km) above the 
Earth’s surface. At this minimum altitude a final 
insertion manoeuvre could be performed.  

The notion of targeting asteroids towards the Earth 
may raise some concerns with regards to a possible 
enhancement of the impact threat. Clearly, changing the 
orbit of a large NEA could potentially be a threat to 
Earth, although engineering the orbit of large objects 
may also be unfeasible. Thus for this objects 
transferring mined resources may provide the best and 
only option. On the other hand, for smaller bodies the 
impact hazard can be mitigated since bodies of tens of 
meters of diameter should completely ablate in the 
atmosphere[19]. Thus, bodies in the order of 10 meters 
diameter may be perfect targets for first capture 
demonstrator missions. 

A parabolic orbit is assumed here to be the threshold 
between an Earth-bound orbit and an Earth escape orbit. 

Hence, the ∆v necessary for an Earth capture cap
v  at 

the perigee passage results in: 

Asteroid’s Orbit 

1A.U.encr 

Earth’s Orbit M

1A.U.encr 

r

enc
  
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 22 2
cap

p p

v v
r r

 
 


     (14) 

where v
  is the hyperbolic excess velocity described in 

Eq.(13) and rp is the pericentre altitude (i.e., 200r km 
). Finally, the sum of Eqs.(7) and (14) provides the total 
∆v budget for a two-impulse transfer to Earth. 

Keplerian Feasible Regions 
As noted earlier, the integration in Eq.(6) yields the 

probability of an asteroid to be found within a specified 
Keplerian region. By rearranging Eqs.(7) and (14), we 
can now define the regions from which transfers to 
Earth cost less than a given limit ∆vthr. Fig. 4, for 
example, shows the Keplerian region in the plane {a,e} 
where asteroid resources can be transfer to Earth with a 
total ∆v equal or lower than 2.37 km/s. This ∆v 
corresponds to the Moon’s escape velocity, thus 
offering a direct comparison between material available 
at the Moon and within an equivalent energy threshold 
elsewhere in the solar system.  Also, superimposed in 
the figure are almost 5,000 asteroids (tiny dots and 
small crosses), which had been surveyed by April 2010. 

 

 
Fig. 4: Keplerian {a,e} space reached by a maneuvre of 

2.37 km/s (i.e., Moon’s escape velocity). 
Superimposed are all near Earth asteroids known 
within the {a,e} space as of April 2010. 

 Fig. 4 shows three different lines (solid, dash-dotted 
and dotted line) delimiting an area in the {a,e} plane. 
The solid line results from expressing Eq.(14) as an 
explicit function of the semi-major axis a and vcap 
necessary for an Earth capture: 

  
221 1

, 1 3
4cap

s

v
e v a

a a 
 

     
 

 (15) 

where the hyperbolic excess velocity v∞ is defined as: 

 

2

2 2

p p

capv
r r

v
 

 

   
 
 
 

 (16) 

Equation (15) therefore yields the value of 
eccentricity for which an asteroid with semi-major axis 
a can be captured with a manoeuvre ∆vcap at the perigee 
passage.  Asteroids with semi-major axis a, but 
eccentricity lower than the result provided by Eq.(15) 
should be captured with a manoeuvre lower than capv . 

Thus, if capv is set to the maximum allowed 

manoeuvre ∆vthr, the eccentricity resulting from Eq.(15) 
is also the maximum allowed eccentricity, 

 max ,thre e v a  , i.e., solid line in Fig. 4 when 

∆vthr=2.37 km/s. 
Eccentricities lower than emax require lower ∆v 

manoeuvres to be captured at the Earth, but there is a 
geometrical limit to the minimum Earth insertion 
manoeuvre capv .The minimum capv  occurs when the 

encounter geometry is such that the intersection is at the 
line of apsis. With this geometry only one intersection 
point exists, and lower eccentricities imply orbits with 
no Earth-crossing points (see Fig. 4). The minimum 
allowed eccentricity for an orbit with semi-major axis a 
is therefore: 

    
 min

1 1  if 1

1 1  if 1

a a
e a

a a

     
 (17) 

so that, if 1a  ,the periapis radius is 1 (see dotted line 
in Fig. 4), and, if instead 1a  ,the apoapsis is 1 (see 
dash-dotted line in  Fig. 4). 

Once the analytical expressions for the maximum 
and minimum eccentricity emax and emin are known, the 
maximum and minimum allowed semi-major axis a can 
be computed by finding when 

   max min,thresholde ev a a
 

occurs. The latter equation 

results in a second degree polynomial with the 
following two solutions: 

  min 2 2
max

1

1 2

threshold

s s

a v
v v

 

 
 

  

 

 

 (18) 

where v∞ is defined as in Eq.(16) and amin correspond to 
the positive sign while amax corresponds to the negative. 
 Inside this delimited area within the {a,e} Keplerian 
space, we can ensure that the coplanar capture 
manoeuvres will be lower than the limit threshold ∆vthr.  
Thus, the reminder impulse,  

∆vinc(a,e,∆vthr)=∆vthr-∆vcap(a,e) ,                (19) 
can be used for changing the orbital plane of any 
available objects.  
 From Eq.(7) one can see that the cost of changing 
the orbital plane of a given asteroid is not only defined 
by the initial {a,e,i} of the asteroid, but also by the 
argument of the periapsis ω. The reason for this is that 
the velocity at the crossing plane plXv  is the velocity at 

the line of nodes of the asteroid, whose orientation 
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within the orbit of the asteroid is defined by ω. Now, for 
a given orientation, or specified ω, the optimal location 
for a change of plane is the furthest node from the Sun, 
since this corresponds to the lowest velocity, and 
therefore, minimises Eq.(7). This then concludes that 
the optimal orientation of an asteroid for changing its 
plane to an inclination of 0 degrees is such that the line 
of nodes is the line of apsis, while the worst orientation 
is such that the line of nodes is the semilatus rectum.  
 Considering the worst orientation, the maximum 
inclination from which asteroids can be placed into a 
coplanar orbit is: 

    

 
1

max_ 1/2

2
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, , 2 sin

2 1

inc thr
p thr

S

v a e v
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e
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      

 (20) 

 
Thus, any orbit with an inclination lower than imax_p, no 
matter the orientation (i.e., ω), has a two-impulse 
transfer to Earth with a ∆v budget lower than or equal to 
∆vthr. The small crosses shown in Fig. 4 represent the 
surveyed asteroids with inclinations lower than the 
resultant from Eq.(20). 
 Considering now the best possible orientation, 
where the change of plane manoeuvre occurs at the 
apoapsis, the maximum inclination from which 
asteroids can be placed into coplanar orbit is: 

    
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(21) 

Thus, any asteroid with an inclination higher than imax_ra, 
no matter the orientation, cannot be transported to Earth 
with a ∆v budget lower than or equal to ∆vthr. 

For inclinations between imax_p and imax_ra only a 
fraction, between 0 and 1, of asteroids will statistically 
have the orientation required for a change of inclination 
within the ∆v budget. In order to compute this fraction, 
one can start by calculating the range of true anomalies 
that allow a change of plane within the required ∆v. A 
true anomaly allowing the change of plane refers to a 
true anomaly for which if the ascending/descending 
node lies in that angular position, then the inclination 
maneuvre is possible with the allowed ∆v budget. Note 
that if the descending node lies at νd the ascending node 
will lie at νd+π, and that the point chosen for the 
maneuvre would always be the position with the lowest 
orbital velocity.  

Since the NEO’s argument of the periapsis ω has 
been assumed to be uniformly distributed, the fraction 
of feasible true anomalies is equivalent to the fraction of 

feasible orientations. The following equation can then 
be written: 
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(22) 

which describes the probability to find an asteroid with 
the required orientation for a change of plane within the 
∆v limit. 

Probability to find an accessible asteroid 
In previous sections we have defined the sequence 

of impulses in the transfer and the regions delimiting the 
set of starting orbits {a,e,i} from which the Earth is 
accessible under a total ∆v lower than a limit threshold. 
We can now compute the probability to find an object 
with these initial conditions by integrating the following 
equation:  
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(23) 

 
Equation (23) estimates the probability to find 

accessible resources under a given ∆vthr by using a two-
impulse transfer and a NEO orbital distribution as 
defined in section II.II. Note that the dependence of 
P2imp with ∆vthr is not only in the fraction finc but also in 
the limit of integrations, which have functional 
dependencies as follow: 
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III.III One-impulse transfer 
As shown in Fig. 4, if the asteroid is coplanar with 

the Earth orbit, two orbital crossing points will always 
exist, as long as the periapsis and apoapsis of the 
asteroid’s orbit are smaller and larger than 1 AU, 
respectively. On the other hand, if the asteroid is not 
coplanar with the Earth’s orbit, only specific values of 
the angle of the periapsis ω will render an orbital 
intersection or a MOID small enough for a capture to be 
possible (see Fig. 5).  
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Fig. 5: Representation of all possible orientations of an 
orbit as a function of argument of the periapsis ω. 
The figure shows two orbital planes, one for the 
Earth’s orbit and one for the asteroid’s orbit. By 
continuously changing the argument of the periapsis, 
all possible orientations of the asteroid orbit in the 
plane are yielded. The two crosses mark the Earth 
orbital crossing points which are possible only for 
four different values of the argument of the periapsis 
ω. Two arrows show the argument of the periapsis ω 
for one of the four configurations. 

 
As shown by Fig. 5, only 4 specific values of ω 

yield a MOID equal to zero (i.e., an intersection 
between the two orbits). Except if the semilatus rectum 
p is equal to 1, in which case there will be only two 
values of ω yielding two simultaneous crossing points. 
Equation (8) already provided the two possible true 
anomalies that give the asteroid a distance of 1AU from 
the Sun. Therefore, for the orbital intersection to occur 
in the non-ecliptic asteroid case, one of these two angles 
is required to coincide with the line of nodes, i.e., the 
straight line where the two orbital planes meet. This 
yields four different arguments of the periapsis ω for 
which the MOID is 0: 

 
  0MOID enc enc enc enc           (24) 

 
Close to the values of ωMOID0, the variation of MOID 

as a function of periapsis argument can be approximated 
linearly[18, 20]. With the axis shown in Fig. 6, the 
motion of the Earth and the asteroid can be well 
described using a linear approximation of the Keplerian 
velocities of the two objects at the line of nodes. This 
defines two straight line trajectories, and thus, the 
minimum distance between these two linear trajectories 
can be found.   

Fig. 6: Set of coordinates used to compute Eq.(25). 

 
The minimum distance can then be written as an 

explicit function of ∆x (i.e., distance between the centre 
of the coordinates described in Fig. 6 and the point at 
which the asteroid crosses the Earth orbital plane), 
which can also be described as a linear function of the 
argument of the periapsis ω. Finally, an expression such 
as: 

 

   

0

2

2

min

1
tan

sin

MOID
MOID

i

 



  
 

  
 

 (25) 

yields an approximate value of the MOID distance. The 
expression min[|.|] denotes the minimum value of the 
absolute differences with any of the angles ωMOID0 and 
the tangent of the flight path angle can be calculated as: 

  
 22

tan
1

p

e p
 

 
 (26) 

 For a complete derivation of a similar formulae, the 
reader can refer to Opik’s work[18] or alternatively to 
Bonanno’s work[20].  Note that Eq.(25) is valid only for 
values of ω close to any of the values of ωMOID0 from 
equation (24). Fig. 7 shows, as an example, the 
evolution of the MOID distance as a function of 
periapsis argument for the elliptic orbit plotted in Fig. 5 
(i.e., a=1.1AU, e=0.8,i=30o). The figure compares the 
results of the MOID calculated by means of Eq.(25) 
with the results of a numerical algorithm that finds the 
MOID by minimising the distance between two 
positions defined by the true anomaly of each orbit. As 
can be seen, Eq.(25) yields a very good approximation 
of the real MOID when the MOID is small. Clearly, the 
error from this formulation increases for very low 
inclinations and very low eccentricities, but it is still 
tolerable for inclinations of 0.1 degree and eccentricities 
of 0.01. 
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Fig. 7: Comparison between the analytical and 

numerical approaches to compute MOID. 

Capture at MOID point 
Now that it has been shown that the analytical 

approximation of MOID is a reliable way of assessing 
the distance between two orbits, we can define the 
maximum MOID at which the capture of an object is 
possible given a limiting ∆v budget. Eq.(14), in section 
II.II, defined the required Earth capture manoeuvre 

cap
v  as a function of the hyperbolic excess velocity v∞ 

and the pericentre altitude rp. The latter can also be 
expressed as an explicit function of the hyperbolic 
velocity v∞ and the impulsive manoeuvre: 

 
 

2

22 2

8 cap
p

cap

v
r

v v









 (27) 

Since equation (27) refers to non-coplanar asteroids, 
the hyperbolic velocity v∞ needs to be calculated as: 

   13 2 cos
S

v p
a

i

     (28) 

This expression can be derived by noticing that the 
relative velocity at the encounter for a non-coplanar 
asteroid can be expressed as: 

    , cos , sin
enc enc enc

r n enc n
i iv v r v   . 

Finally, in order to know the maximum MOID at 
which a direct capture is possible, the distance rp needs 
to be corrected by the hyperbolic factor, i.e., factor that 
accounts for the gravitational attraction of the Earth 
during the asteroid’s final approach to the Earth. This 
results on:  

 
2

2
MOID 1cap p

p

r
r v





   (29) 

Note that if the perigee altitude resulting from 
Eq.(27) is smaller than the radius of the Earth, this 
would mean that the capture of that particular body is 
not feasible under that particular ∆v threshold used. In 
fact, the feasible limit for a fly-by was set to 200km 
altitude from the surface of the Earth, also to account 
for the Earth’s atmosphere. 

Fraction of capturable asteroids 
The previous section provided the means of 

calculating the MOID at which capture is possible as a 

function of cap
v . Using the linearly approximated 

MOID in Eq.(25), we can see that within a distance ∆ω 
of ωMOID0 such as: 

 
   

2

21
MOID tan

sincap i
 

 
     

 
 (30) 

a direct capture of the asteroid is possible, since the 
minimum orbital distance is ensured to be smaller than 
MOIDcap, and thus, the capture impulse should be 

smaller than cap
v . One may think then that the total 

range at the neighbourhood of ωMOID0 is 2∆ω, and since 
there are 4 different ωMOID0, the total range of ω at 
which capture is possible should be 8∆ω.  This is 
generally correct, but attention must be payed when 
overlapping of the ranges occurs. If the semilatus 
rectum p is close to 1, the values θenc and π- θenc are also 
close and their ranges (θenc±∆ω and π- θenc±∆ω) may 
overlap. A correction is applied in those cases. 
 The fraction of asteroids with given {a,e,i} that can 
be captured with a given ∆v budget is then:  

    8 , ,
, ,

2lowMOID

a e i
f a e i








 (31) 

without the overlap correction. The fraction flowMOID 
provides the fraction of material with Keplerian 
elements {a,e,i} that could be captured with a single 
manoeuvre (≤∆vcap) at the Earth. Capture of asteroid 
material by means of only one impulse would simplify 
considerably the engineering challenges of 
implementing the two-impulse transfer, described in 
section II, since this type of transfer requires a 
spacecraft to be sent to deep-space to perform a change 
of plane.  

Keplerian Feasible Regions 
 The capturable feasible regions using one-impulse 
transfers in the {a,e}  subspace are the same as in 
section II.II. The only difference between the feasible 
volume {a,e,i} of the two-impulse and the one-impulse 
model lies in the inclination. Since no change of 
inclination is required, the maximum inclination from 
which asteroids can be captured is greatly increased. 
The limit threshold can be computed by realising that v∞ 
calculated as in Eq.(28) must be equal to v∞ calculated 
as in Eq.(16), thus: 

  
2

1
max

1 1, , cos 3
2 S

v
i a e v ap 

 
  

        
 (32) 

where v∞ is calculated as in Eq.(16) with an 
200pr r km  .  
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Probability to find an accessible asteroid 
Finally, the probability to find an asteroid in an 

accessible initial orbit (i.e., accessible by using one-
impulse transfer) is: 

 
 

   max max max
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

  
 (33) 

where  P1imp functional dependency with ∆vthr is in the 
limits of the integration, which are defined by Eqs.(18), 
(15), (17) and (32). 

III.IV Average accessible mass. 
At this point, the probability to find accessible 

objects (Eqs.(23) and (33)) and the size population 
model in section II.I can be combined in order to 
estimate the available material that could be exploited 
for future space ventures. The accessible material will 
be mapped as a function of the limiting ∆v budget, and 
as described in the previous two sections, once a ∆v 
threshold has been defined, the probability to find 
accessible material is computed by integrating Eq.(23) 
and Eq.(33) for two and one impulse transfers 
respectively. When the probabilities P2imp and P1imp are 
known, the average accessible mass of near Earth object 
material can be calculated by multiplying these 
probabilities with the total mass of asteroids yielded by 
Eq.(5) considering objects between 32 km (i.e., largest 
Near Earth object known today) and 1 meter diameter. 
Fig. 8 shows the results of accessible asteroid mass as a 
function of ∆v threshold. 

 
Fig. 8: Average accessible asteroid mass for exploitation 

of resources as a function of ∆v threshold. 

The results in Fig. 8 allow a direct comparison 
between lunar and asteroid resource exploitation. For a

thresholdv  equal to the Moon’s escape velocity (i.e., 2.37 

km/s) the average accessible asteroid material is of the 

order of 1.75x1013 kg using a two-impulse transfer as 
described in this paper. Approximately, 3x1012kg of 
material could also be captured during Earth fly-by, 
without having to modify the orbit geometry of these 
objects. Even if the same thresholdv provides access to 

many orders of magnitude more material at the Moon 
(i.e., mass of the Moon), the main advantage of asteroid 
resources with respect lunar resources is that asteroidal 
material can be exploited at a whole spectrum of ∆v. For 
example, 6.4x109kg of asteroid resources could still be 
exploited at a thresholdv of only 100 m/s by using a 

serendipitous capture such as the one described by the 
one-impulse transfer. Lunar material instead requires an 
energy threshold to overcome the Moon’s gravity well 
(i.e., a ∆v of 2.37 km/s). On the other hand, the Moon is 
believed to be a relatively resource-poor body [2], thus 
asteroid resource exploitation above 2.37 km/s may still 
be an attractive option.  

III.V Phasing maneuvre 
Previous sections have assumed that if the orbital 

intersection exists, then the asteroid would eventually 
meet the Earth. This statement may be true if the time 
available to transfer the asteroid is not constrained, but 
for realistic scenarios this does not occur. Therefore, 
some analysis on the cost of the manoeuvring necessary 
to ensure the encounter opportunity must be performed. 

For a more realistic transfer scenario, in which the 
orbital phasing is also considered, an additional 
impulsive manoeuvre may be necessary in order to 
provide the correct phasing to the asteroid. This 
manoeuvre is generally small and must be provided as 
early as possible, so that the secular effect due to the 
change in period yields the orbital drift necessary for the 
asteroid to be at the Earth orbital crossing point at the 
required time. Hence, if only secular effects are 
considered[21-22], which is regarded as a good 
approximation for the level of accuracy intended in this 
paper, the phasing manoeuvre should correct the 
difference in mean anomaly ∆M that exists for the 
intended encounter (see Fig. 3). This is expressed as: 

  e mM n t t      (34) 

where ∆n is the change of mean motion of the asteroid 
due to the phasing manoeuvre and (te-tm) is the time-
span between the manoeuvre (tm) and the encounter (i.e. 
time at which the Earth is at the crossing point te). The 
change in mean motion of the asteroid can be defined 
as: 
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 (35) 

where δa is the change of semi-major axis of the 
asteroid due to the impulsive manoeuvre. Using the 
Gauss planetary equations[23], δa can be expressed as: 
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 0

22
t

S

a v
a v 


  (36) 

where δvt is the tangential component of the impulsive 
manoeuvre and v0 is the orbital velocity at the point at 
which the impulsive manoeuvre is applied. Eq.(36) 
seems to indicate that the optimal position for a phasing 
manoeuvre is the periapsis, since this is the point at 
which the orbital velocity v0 is maximum. This is 
generally true, except for cases in which the term (te-tm) 
of equation (34) drives the optimality of the phasing 
manoeuvre.  
 Finally, rearranging Eq.(34), (35) and (36), the 
phasing manoeuvre necessary to drift the asteroid 
through ∆M angular position at time te, given a 
impulsive manoeuvre at time tm, can be expressed as: 
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 (37) 

which provides a good estimation of the cost of the 
phasing manoeuvre to target an Earth encounter.  
 Considering an Earth-asteroid configuration such as 
in Fig. 3, an algorithm was implemented that computes 
the fraction of mean anomalies inside the asteroid 
orbital path that can be phased with the Earth with a δvt 
smaller than a given threshold. The algorithm requires 
as an input the ∆M at a given time te at which the Earth 
is assumed to be at the crossing point from which ∆M is 
measured. Also a time constraint needs to be specified, 
which defines the maximum allowed manoeuvre time 
tmax

m. Then, the algorithm computes the δvt necessary to 
cancel not only the ∆M gap at time te, but also all other 
possible encounters opportunities, which are defined by 
the times at which the Earth is at the crossing points 
during the time-span available. For each possible 
encounter two manoeuvre times are considered; the first 
available periapsis passage and tmax

m. This procedure is 
repeated for many different angular positions ∆M at te, 
from which then the fraction of the orbit that can be 
phased under a ∆v limit is calculated. 

Fig. 9 includes the effect of 40, 20 and 10 years time 
constraints on the accessibility of asteroid resources. 
The figure also shows accessibility of asteroid material 
without considering any time constraint (also shown in 
Fig. 8), but this time only the results of the optimal 
transfer strategy are shown for each ∆v threshold. From 
the results in Fig. 9 it can be concluded that the free 
phasing assumption during the description of the 
transfer models is a good approximation for relatively 
large ∆v thresholds. At low ∆v thresholds some early 
manoeuvring may be required. Note that a 40-year 
trajectory may not necessarily be envisaged as a 
trajectory requiring 40 years to be completed. This only 

suggest the necessity to provide early shepherding 
manoeuvres, allowing asteroids to have the right 
phasing conditions with Earth. Years later, a short 
sequence of manoeuvres can be provided to achieve a 
final capture of the asteroid or its mined material. 
 

Fig. 9: Time constrained and unconstrained accessible 
mass.  

 

IV. ACCESSIBILITY OF ASTEROIDS  
One of the important issues not resolved by the 

results shown in Fig. 8 and Fig. 9 is the number of 
missions that would require exploiting all or part of the 
accessible asteroid resources. This issue is of key 
importance, since if a given resource is spread in a large 
number of very small objects, gathering all of them may 
become a cumbersome task, and therefore not 
economically worthwhile. 

In order to estimate the average size of each 
accessible object, we will assume that each single object 
has the same probability P (see section III.IV) to be 
found in the accessible region. Thus, the probability to 
find k asteroids within a population of n asteroids in a 
region delimited by the parameter ∆v threshold is well 
described by the binomial distribution. In this particular 
case, for which P is a very low probability and n a very 
large number of asteroids, Poisson distribution (a 
limiting case of the binomial distribution when n tends 
to infinity) represents a very good approximation of the 
statistical behaviour of the problem. Therefore, the 
probability g(k,λ) to find k asteroids when the expected 
number is λ can be described by: 
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The expected number λ, or average number of 
accessible asteroids, can be calculated as: 
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    min min maxD N D D D P       (39) 

where ∆N is the total number of asteroids with 
diameters larger than Dmin  and smaller than Dmax  

(Eq.(2)) and P the probability to find objects within a 
given Keplerian region.  In the following, ∆N will keep 
Dmax fixed to the 32-km diameter, while Dmin may vary 
to modify the value of λ as required. 

An integration such as: 

  ,
NEAn

g k dk


  

yields the probability to find at least nNEA asteroids 
when the expected value, or average, was λ. By finding 
then the value of λ that yields an accumulative 
probability of 50%, 

   min, 50%
NEAn

g k D dk


  , (40) 

we can estimate the median diameter of the smallest 
object in the nNEA set. This procedure can also be 
repeated with accumulative probabilities of 95% and 
5% to obtain the 90% confidence region. The results of 
this procedure can be seen in the following figure. 

Fig. 10 shows the median diameter of the first, tenth, 
hundredth and thousandth largest accessible asteroid in 
the near Earth space, together with the 90% confidence 
region of each one of these objects. Note that the 90% 
confidence regions account only for the statistical 
uncertainty of finding find k asteroids within a 
population of n objects, and that the population is 
perfectly described by Eq.(1). The figure also shows the 
median diameter considering a 2/3 drop in the number 
of small asteroids as estimated by Harris [24], this is 
represented by the lower branch in each asteroid set of 
data. This second population size distribution of 
asteroids was represented by a three slope power law 
distribution matching with Eq.(1) at 1-km and 10-m, 
while providing a 2/3 drop on the accumulative number 
of asteroids at 100-m. Finally, Fig. 10 also shows the 
results by considering 40, 20 and 10 years of time 
constraint in the transfer time, represented as the three 
departing lines from the main set of data.  

The information in the figure can be read as follows: 
let us set, for example, the ∆v threshold at 100 m/s, the 
largest accessible object has a 50% probability to be 
equal to or larger than 24 meters diameter, while we can 
say with 90% confidence that its size should be between 
72 meters and 12 meters. We can also see that when 
accounting for a population of asteroids as estimated by 
Harris [24] the median becomes 20 meters instead of 24 
meters. Finally, we also see that when time constraints 
are included and phasing maneuvre are estimated as 
described in section III.V, the median diameter decays 
to 23 meters when the constraint is set to 40 years, 20 
meters if the constraint is 20 years and 13 meters if the 
limit is at 10 years (solid-dotted lines). The following 

set of data in the decreasing ordinate axis is the group 
referring to the 10th largest object found within the 
region of feasible capture given by a ∆v threshold of 
100 m/s, whose median diameter is at 8 meters 
diameter. The 100th largest object is foreseen to have a 
diameter of 3 meters and 1000th largest of 1 meter. 

 

Fig. 10: Expected size of the accessible asteroid.  

 

V. FINAL DISCUSSION 
The results shown from Fig. 8 to Fig. 10 indicate the 

feasibility of future asteroid resource utilisation. One 
can imagine advantageous scenarios for space utilisation 
from the results on the expected size of the accessible 
material (Fig. 10). For example, the exploitation of the 
largest expected object found within a 100 m/s budget, a 
24-m asteroid, could supply from 107kg to 4x107kg of 
asteroid material, depending on composition and 
density. If this object was a hydrated carbonaceous 
asteroids a million litres of water could possibly be 
extracted (considering an asteroid of density 1300 kg/m3 
[15] and 8% [25] of its weight in water). However, if 
this object was  an M-class asteroid (density 5300 kg/m3 
[15]), of order thirty thousand tonnes of metal could 
potentially be extracted and even a tonne of Platinum 
Group Metals (PGM) (88% of metal assumed and 
35ppm of PGM [25]). The latter resource could easily 
reach a value of fifty million dollars n Earth’s 
commodity markets. If the ∆v budget is increased to 
1km/s, one 190-m diameter object should be accessible. 
This corresponds to more than 300 million litres of 
water or more than 10 million tons of metal and 600 
tons of PGMs valued at 30 billion dollars.  

One of the most valuable resources in space is water, 
which can be use for both life support and as a rocket 
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propellant. Thus, most likely, this commodity in 
particular may represent a very important resource for 
exploitation in a near future. If water is mined and 
finally transported to LEO by adding 3.3 km/s to the ∆v 
cost estimated here (v threshold provided in Fig. 8 to 
Fig. 10 is the change of velocity required for a weakly 
bound Earth orbit), the total cost of transportation will 
still be of order 3 times less that that required to 
transport the water from the Earth surface. In a scenario 
such this a 24-m hydrated asteroid could propel a 200 
tonne payload from LEO to the surface of the moon. 
More importantly, the energy invested in transporting 
this propellant would be a third of that necessary to 
transport the propellant from the Earth’s surface to 
LEO. Of course, in order for this scenario to be 
preferable over the more traditional Earth transport, the 
cost of mining and transporting the resources back to 
Earth should be lower than the two-thirds saving on 
transportation cost. Clearly, this figure improves 
significantly if the propellant is transported to the Earth-
Moon Lagrangian points and used to fuel interplanetary 
missions [26]. For such a scenario, a mission to Mars 
would require to be launched only with the propellant to 
reach the Earth-Moon equilibrium points, which implies 
launch mass savings of at least a factor of two. 

As noted previously, asteroids could be mined and 
their resources transported to the Earth-Moon system. In 
fact the transport of material could well benefit from the 
resources found at the asteroid, and, for example, use 
water as a propellant found in-situ. However, mining 
operations may entail a technical complexity, both for 
manned missions and robotic exploration, that may 
make the possibility of capturing material directly in 
Earth orbit a desirable option. The possibility of moving 
the entire asteroid into an Earth bound orbit would 
allow much higher mission flexibility for resource 
extraction and transfer operations. In this kind of 
scenario, concepts for asteroid deflection technologies 
could be usefully exploited [6]. Although, each asteroid 
transfer should be carefully design and optimised, by 
using some of the technologies envisaged for asteroid 
deflection some general estimations of spacecraft mass 
in orbit can be provided. For example, a 10-m asteroid 
could potentially be found with an estimated capture ∆v 
of 30 m/s using a one-impulse type of transfer. Even 
such a small object could still supply 50 tonnes of water 
or 600 tonnes of metals and PGMs with a possible 
market value of one million dollars.  An object of this 
size could be capture during its Earth encounter by 
providing a collision with a 5-tonne spacecraft at a 
speed between 4 and 17 km/s, depending on the type of 
object, and therefore its density and mass. A kinetic 
impact scenario like this can be easily envisaged 
considering that the asteroid would be moving at a 
speed of 11 km/s at the perigee. Even more appealing is 
the possibility of a ballistic capture of such objects. This 

10-m object would be expected to have a relative 
velocity with the Earth lower than 1km/s, which makes 
it a suitable candidate for a ballistic capture at the Earth 
by exploiting three-body dynamics [27].  

The analysis and results presented in this paper are 
intended to provide a qualitative analysis on the 
feasibility of asteroid exploitation. The results and 
subsequent discussion have only drawn the ‘big picture’ 
for future asteroid resource utilisation. The hypothesis 
from which this work is based have tried to be as 
conservatives as possible, so that the real accessible 
mass should be expected to be higher. For example, the 
transfer models provided a conservative, worst case 
scenario for the required ∆v, and so the available 
asteroid mass found is then a lower limit. More complex 
trajectories, such as multiple Earth fly-by, lunar gravity 
assists or manifold dynamics, would be expected to 
provide a significant increase in captured mass.  
However, some hypothesis will require of future work 
to completely assess their significance. For example, the 
assumption on the orbital distribution being independent 
of the asteroid size [8]. Non-gravitational perturbations 
affect objects of different size differently, which implies 
that the different asteroid sources may be supplying 
different asteroid size distributions, since non-
gravitational perturbations are the main mechanisms 
that feed the different asteroid sources.  For the same 
reason, different orbital regions may contain a higher 
population of a given type of asteroids (i.e., different 
composition). Despite these possible sources of 
inaccuracy, the results shown in the paper should still 
hold their qualitative value.  

V. CONCLUSIONS 
This paper has shown that the utilisation of asteroid 

resources may be a viable mean of providing substantial 
mass in Earth orbit for future space ventures. A 
statistical population of near Earth asteroids has been 
used, along with a map of the Keplerian orbital element 
space from which the Earth can be reached under a 
given series of impulsive manoeuvres, to determine an 
approximate amount of accessible asteroid resources 
within a given specific transfer energy. The range of 
energies analysed has shown that there is a reasonable 
mass of accessible asteroid resources with transfer 
energies lower than those required to exploit the Moon. 
Moreover, these resources can be accessed with an 
incremental level of energy, while lunar resources 
would require a minimum threshold equal to the Moon’s 
escape velocity. Exploitation of higher energy transfers 
may only be justifiable if the required resource is not 
available on the Moon. The size distribution of objects 
for near-Earth objects also ensures that the amount of 
exploitable mass is primarily made up of the largest 
objects within Earth reach. This guarantees that most of 
the exploitable mass could be successfully harvested by 
only a few mining or capture missions. Small objects 
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with a diameter of order tens of meters to a few hundred 
meters diameter could potentially be the first targets for 
strategic resources. It is very likely that interesting 
targets in this range of diameters will be found in orbits 
such that the energetic requirements to transport their 
resources to Earth will be very low. 
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