Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Deprotonative metalation using ate compounds: synergy, synthesis, and structure building

Mulvey, R.E. and Mongin, F. and Uchiyama, M. and Kondo, Y. (2007) Deprotonative metalation using ate compounds: synergy, synthesis, and structure building. Angewandte Chemie, 46 (21). pp. 3802-3824. ISSN 0044-8249

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Historically, single-metal organometallic species such as organolithium compounds have been the reagents ofch oice in synthetic organic chemistry for performing deprotonation reactions. Over the past few years, a complementary new class of metalating agents has started to emerge. Owing to a variable central metal (magnesium, zinc, or aluminum), variable ligands (both in their nature and number), and a variable second metallic center (an alkali metal such as lithium or sodium), 'ate' complexes are highly versatile bases that exhibit a synergic chemistry which cannot be replicated by the homometallic magnesium, zinc, or aluminum compounds on their own. Deprotonation accomplished by using these organometallic ate complexes has opened up new perspectives in organic chemistry with unprecedented reactivities and sometimes unusual and unpredictable regioselectivities.