Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Deprotonative metalation using ate compounds: synergy, synthesis, and structure building

Mulvey, R.E. and Mongin, F. and Uchiyama, M. and Kondo, Y. (2007) Deprotonative metalation using ate compounds: synergy, synthesis, and structure building. Angewandte Chemie, 46 (21). pp. 3802-3824. ISSN 0044-8249

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Historically, single-metal organometallic species such as organolithium compounds have been the reagents ofch oice in synthetic organic chemistry for performing deprotonation reactions. Over the past few years, a complementary new class of metalating agents has started to emerge. Owing to a variable central metal (magnesium, zinc, or aluminum), variable ligands (both in their nature and number), and a variable second metallic center (an alkali metal such as lithium or sodium), 'ate' complexes are highly versatile bases that exhibit a synergic chemistry which cannot be replicated by the homometallic magnesium, zinc, or aluminum compounds on their own. Deprotonation accomplished by using these organometallic ate complexes has opened up new perspectives in organic chemistry with unprecedented reactivities and sometimes unusual and unpredictable regioselectivities.