Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Deprotonative metalation using ate compounds: synergy, synthesis, and structure building

Mulvey, R.E. and Mongin, F. and Uchiyama, M. and Kondo, Y. (2007) Deprotonative metalation using ate compounds: synergy, synthesis, and structure building. Angewandte Chemie, 46 (21). pp. 3802-3824. ISSN 0044-8249

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Historically, single-metal organometallic species such as organolithium compounds have been the reagents ofch oice in synthetic organic chemistry for performing deprotonation reactions. Over the past few years, a complementary new class of metalating agents has started to emerge. Owing to a variable central metal (magnesium, zinc, or aluminum), variable ligands (both in their nature and number), and a variable second metallic center (an alkali metal such as lithium or sodium), 'ate' complexes are highly versatile bases that exhibit a synergic chemistry which cannot be replicated by the homometallic magnesium, zinc, or aluminum compounds on their own. Deprotonation accomplished by using these organometallic ate complexes has opened up new perspectives in organic chemistry with unprecedented reactivities and sometimes unusual and unpredictable regioselectivities.