Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Deprotonative metalation using ate compounds: synergy, synthesis, and structure building

Mulvey, R.E. and Mongin, F. and Uchiyama, M. and Kondo, Y. (2007) Deprotonative metalation using ate compounds: synergy, synthesis, and structure building. Angewandte Chemie, 46 (21). pp. 3802-3824. ISSN 0044-8249

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Historically, single-metal organometallic species such as organolithium compounds have been the reagents ofch oice in synthetic organic chemistry for performing deprotonation reactions. Over the past few years, a complementary new class of metalating agents has started to emerge. Owing to a variable central metal (magnesium, zinc, or aluminum), variable ligands (both in their nature and number), and a variable second metallic center (an alkali metal such as lithium or sodium), 'ate' complexes are highly versatile bases that exhibit a synergic chemistry which cannot be replicated by the homometallic magnesium, zinc, or aluminum compounds on their own. Deprotonation accomplished by using these organometallic ate complexes has opened up new perspectives in organic chemistry with unprecedented reactivities and sometimes unusual and unpredictable regioselectivities.

Item type: Article
ID code: 27772
Keywords: ate complexes, dimetallic complexes, inverse crown compounds, metalation, synthetic methods, Physical and theoretical chemistry
Subjects: Science > Chemistry > Physical and theoretical chemistry
Department: Faculty of Science > Pure and Applied Chemistry
Related URLs:
    Depositing user: Miss Stephanie Cassidy
    Date Deposited: 11 Oct 2010 20:18
    Last modified: 04 Oct 2012 13:19
    URI: http://strathprints.strath.ac.uk/id/eprint/27772

    Actions (login required)

    View Item