Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Unsteady gravity-driven slender rivulets of a power-law fluid

Yatim, YM and Wilson, Stephen K. and Duffy, B.R. (2010) Unsteady gravity-driven slender rivulets of a power-law fluid. Journal of Non-Newtonian Fluid Mechanics, 165 (21-22). pp. 1423-1430. ISSN 0377-0257

[img]
Preview
PDF (Yatim-etal-JNNFM-2010-Unsteady-gravity-driven-slender-rivulets-of-a-power)
Yatim_etal_JNNFM_2010_Unsteady_gravity_driven_slender_rivulets_of_a_power.pdf - Accepted Author Manuscript

Download (366kB) | Preview

Abstract

Unsteady gravity-driven flow of a thin slender rivulet of a non-Newtonian power-law fluid on a plane inclined at an angle α to the horizontal is considered. Unsteady similarity solutions are obtained for both converging sessile rivulets (when 0 < α < π/2) in the case x < 0 with t < 0, and diverging pendent rivulets (when π/2 < α < π) in the case x > 0 with t > 0, where x denotes a coordinate measured down the plane and t denotes time. Numerical and asymptotic methods are used to show that for each value of the power-law index N there are two physically realisable solutions, with cross-sectional profiles that are 'single-humped' and 'double-humped', respectively. Each solution predicts that at any time t the rivulet widens or narrows according to |x | (2N+1)/2(N+1) and thickens or thins according to |x | N/(N+1) as it flows down the plane; moreover, at any station x, it widens or narrows according to |t | −N/2(N+1) and thickens or thins according to |t | −N/(N+1). The length of a truncated rivulet of fixed volume is found to behave according to |t | N/(2N+1).