Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Unsteady gravity-driven slender rivulets of a power-law fluid

Yatim, YM and Wilson, Stephen K. and Duffy, B.R. (2010) Unsteady gravity-driven slender rivulets of a power-law fluid. Journal of Non-Newtonian Fluid Mechanics, 165 (21-22). pp. 1423-1430. ISSN 0377-0257

[img]
Preview
PDF (Yatim-etal-JNNFM-2010-Unsteady-gravity-driven-slender-rivulets-of-a-power)
Yatim_etal_JNNFM_2010_Unsteady_gravity_driven_slender_rivulets_of_a_power.pdf - Accepted Author Manuscript

Download (366kB) | Preview

Abstract

Unsteady gravity-driven flow of a thin slender rivulet of a non-Newtonian power-law fluid on a plane inclined at an angle α to the horizontal is considered. Unsteady similarity solutions are obtained for both converging sessile rivulets (when 0 < α < π/2) in the case x < 0 with t < 0, and diverging pendent rivulets (when π/2 < α < π) in the case x > 0 with t > 0, where x denotes a coordinate measured down the plane and t denotes time. Numerical and asymptotic methods are used to show that for each value of the power-law index N there are two physically realisable solutions, with cross-sectional profiles that are 'single-humped' and 'double-humped', respectively. Each solution predicts that at any time t the rivulet widens or narrows according to |x | (2N+1)/2(N+1) and thickens or thins according to |x | N/(N+1) as it flows down the plane; moreover, at any station x, it widens or narrows according to |t | −N/2(N+1) and thickens or thins according to |t | −N/(N+1). The length of a truncated rivulet of fixed volume is found to behave according to |t | N/(2N+1).