Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Structure and ionic conductivity in lithium garnets

Cussen, Edmund J. (2010) Structure and ionic conductivity in lithium garnets. Journal of Materials Chemistry, 20 (25). pp. 5167-5173. ISSN 0959-9428

This is the latest version of this item.

[img]
Preview
Text (Campbell-etal-CC-2010-Structual-elaboration-of-the-surprising-ortho-zincation)
Campbell_etal_CC_2010_Structual_elaboration_of_the_surprising_ortho_zincation.pdf - Accepted Author Manuscript

Download (1MB) | Preview

Abstract

Garnets are capable of accommodating an excess of lithium cations beyond that normally found in this prototypical structure. This excess lithium is found in a mixture of coordination environments with considerable positional and occupational disorder and leads to ionic conductivity of up to 4×10-4 S cm-1 at room temperature. This high value for total conductivity, combined with excellent thermal and (electro)chemical resistance makes these candidate materials for operation in all solid-state batteries. This review looks at garnets with a wide range of stoichiometries and lithium concentrations and the impact of complex lithium distributions and crystallographic order/disorder transitions on the transport properties of these materials.

Available Versions of this Item