Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

High reflectivity GaN/Air vertical distributed Bragg reflectors fabricated by wet etching of sacrificial AllnN layers

Xiong, C. and Edwards, P.R. and Christmann, G. and Gu, E. and Dawson, Martin and Baumberg, J.J. and Martin, R.W. and Watson, I.M. (2010) High reflectivity GaN/Air vertical distributed Bragg reflectors fabricated by wet etching of sacrificial AllnN layers. Semiconductor Science and Technology, 25 (3). ISSN 0268-1242

Full text not available in this repository. (Request a copy from the Strathclyde author)


Microstructures containing GaN/air distributed Bragg reflector (DBR) regions were fabricated by a selective wet etch to remove sacrificial AlInN layers from GaN-AlInN multilayers. The epitaxial multilayers were grown on free-standing GaN substrates, and contained AlInN essentially lattice matched with GaN in order to minimize strain. Two geometries were defined for study by standard lithographic techniques and dry etching: cylindrical pillars and doubly anchored rectangular bridges. Microreflectivity spectra were recorded from the air-gap DBRs, and indicated peak reflectivities exceeding 70% for a typical 3-period microbridge. These values are likely to be limited by the small scale of the features in comparison with the measurement spot. The stopband in this case was centred at 409 nm, and the reflectivity exceeded 90% of the maximum over 73 nm. Simulations of reflectance spectra, including iterations to layer thicknesses, gave insight into the tolerances achievable in processing, in particular indicating bounds on the parasitic removal of GaN layers during wet etching. Air-gap nitride DBRs as described can be further developed in various ways, including adaptation for electrostatic tuning, incorporation into microcavities, and integration with active emitters.