Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Passive mode-locking of a Ti:sapphire laser by InGaP quantum-dot saturable absorber

Savitski, V.G. and Schlosser, P.J. and Hastie, J.E. and Krysa, A.B. and Roberts, J.S. and Dawson, M.D. and Burns, D. and Calvez, S. (2010) Passive mode-locking of a Ti:sapphire laser by InGaP quantum-dot saturable absorber. IEEE Photonics Technology Letters, 22 (4). pp. 209-211. ISSN 1041-1135

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We demonstrate the use of a novel InGaP quantum-dot (QD) saturable absorber (SA) to induce passively mode-locked (ML) operation of a Ti : sapphire laser. Pulses as short as 518 fs are obtained at 752 nm with an average output power of up to 190 mW for 2.3 W of absorbed pump power at 532 nm. The absorption recovery of the SA is characterized by two decay coefficients: a fast and a slow component having time constants of 0.4 and 300 ps, respectively. The saturation fluence of the InGaP QDs was measured to be 28 J/cm2, the initial low-signal absorption was 1.5%, where 1.15% was nonsaturable loss.