Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

An intra-cavity Raman laser using synthetic single-crystal diamond

Lubeigt, Walter and Bonner, Gerald Michael and Hastie, Jennifer and Dawson, Martin and Burns, David and Kemp, Alan (2010) An intra-cavity Raman laser using synthetic single-crystal diamond. Optics Express, 18 (16). pp. 16765-16770. ISSN 1094-4087

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Low birefringence synthetic single-crystal diamond was used as a Raman laser medium inside a Q-switched Nd:YVO4 laser. A maximum average output power of 375mW was achieved at a wavelength of 1240nm and a repetition rate of 6.3kHz. This equates to a conversion efficiency of 4% from the diode laser to the first Stokes component at 1240nm. Optical losses within the diamond (~1% per single pass) limited the performance and are currently the main barrier to the demonstration of an efficient CW diamond Raman laser.