Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Search-based active optic systems for aberration correction in time-dependent applications

Lubeigt, W. and Poland, S.P. and Valentine, G.J. and Wright, A.J. and Girkin, J.M. and Burns, D. (2010) Search-based active optic systems for aberration correction in time-dependent applications. Applied Optics, 49 (3). pp. 307-314. ISSN 1559-128X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We describe a protocol for the use of a control feedback loop incorporating an iterative optimization routine for a range of time-independent adaptive optics applications. These applications are characterized by the quasi steady state of the aberrative effects (>0:1 s) and contrast, for instance, to astronomical applications where the aberrations constantly vary at frequencies above 10 Hz. For optimal performance in such time-independent applications, the control systems typically require specialized tailoring. A typical example of two different types of time-independent adaptive optics applications-an adaptive optic microscope and an adaptive optic laser platform-are detailed and compared. It is shown that implementing a number of minor, but crucial, application-specific modifications to the control system results in an improved efficiency of an already extremely successful technique for aberration compensation. We present a description of the crucial parameters to consider in a search-based adaptive optics system.