Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

The structural and electrochemical consequences of hydrogenating Copper N2S2 Schiff base macrocycles

Trotter, K.D. and Taylor, M.K. and Forgie, J.C. and Reglinski, J. and Berlouis, L.E.A. and Kennedy, A.R. and Spickett, C.M. and Sowden, Rebecca J. (2010) The structural and electrochemical consequences of hydrogenating Copper N2S2 Schiff base macrocycles. Inorganica Chimica Acta, 363 (7). pp. 1529-1538. ISSN 0020-1693

[img] Microsoft Word (KDT_N2S2H4_Version_3_CMS-JR.doc)

Download (1MB)


A series of cis and trans tetradentate copper macrocyclic complexes, of ring size fourteen - sixteen, which employ amine and thioether donor groups are reported. Apart from 5,6,15,16-bisbenzo-8,13-diaza-1,4-dithia-cyclohexadecane copper(I) (cis-[Cu(H4NbuSen)]+) all of the complexes are obtained in the copper(II) form. Crystallographic analysis shows that the copper(II) complexes all adopt a distorted planar geometry around the copper. In contrast, cis-[Cu(H4NbuSen)]+ is found to adopt a distorted tetrahedral geometry. The complexes were subjected to electrochemical analysis in water and acetonitrile. The effect of the solvent, positions of the donor atoms (cis/trans) on E1/2 is discussed as is the comparison of the electrochemical behaviour of these complexes with their parent Schiff base macrocycles.