Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

The structural and electrochemical consequences of hydrogenating Copper N2S2 Schiff base macrocycles

Trotter, K.D. and Taylor, M.K. and Forgie, J.C. and Reglinski, J. and Berlouis, L.E.A. and Kennedy, A.R. and Spickett, C.M. and Sowden, Rebecca J. (2010) The structural and electrochemical consequences of hydrogenating Copper N2S2 Schiff base macrocycles. Inorganica Chimica Acta, 363 (7). pp. 1529-1538. ISSN 0020-1693

[img] Microsoft Word (KDT_N2S2H4_Version_3_CMS-JR.doc)
KDT_N2S2H4_Version_3_CMS-JR.doc

Download (1MB)

Abstract

A series of cis and trans tetradentate copper macrocyclic complexes, of ring size fourteen - sixteen, which employ amine and thioether donor groups are reported. Apart from 5,6,15,16-bisbenzo-8,13-diaza-1,4-dithia-cyclohexadecane copper(I) (cis-[Cu(H4NbuSen)]+) all of the complexes are obtained in the copper(II) form. Crystallographic analysis shows that the copper(II) complexes all adopt a distorted planar geometry around the copper. In contrast, cis-[Cu(H4NbuSen)]+ is found to adopt a distorted tetrahedral geometry. The complexes were subjected to electrochemical analysis in water and acetonitrile. The effect of the solvent, positions of the donor atoms (cis/trans) on E1/2 is discussed as is the comparison of the electrochemical behaviour of these complexes with their parent Schiff base macrocycles.