Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Metal complexes as potential ligands : the deprotonation of aminephenolate metal complexes

Mustapha, Abdullahi and Reglinski, John and Kennedy, Alan R. (2010) Metal complexes as potential ligands : the deprotonation of aminephenolate metal complexes. Inorganic Chemistry Communications, 13 (4). pp. 464-467. ISSN 1387-7003

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The cationic nickel, copper and zinc complexes of tris-(2-hydroxybenzyl)-aminoethylamine (H6TrenSal) have been deprotonated using potassium hydroxide. The nickel complex can be sequentially deprotonated to form a series of compounds namely, [(H6TrenSal)Ni]+, [(H6TrenSal)Ni] and "[(H6TrenSal)Ni]K". The latter is isolated as a mixture of species namely [{(H6TrenSal)Ni}K(EtOH)]2, [{(H6TrenSal)Ni}K(EtOH)2-μ-OH2]2 and [{(H6TrenSal)Ni}K(EtOH)2-μ-EtOH]2, which co-crystallise in a roughly 50:27.5:22.5 ratio. In contrast the deprotonation of [(H6TrenSal)M]+ (M = Cu, Zn) results in the formation of tetrameric complexes [({(H6TrenSal)Ni}K(OH2)2)4(μ4-OH2)].