Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Application of unsupervised chemometric analysis and self-organising feature map (SOFM) for the classification of lighter fuels

Mat Desa, Wan N.S. and NicDaeid, N. and Dzulkiflee, Ismail and Savage, Kathleen (2010) Application of unsupervised chemometric analysis and self-organising feature map (SOFM) for the classification of lighter fuels. Analytical Chemistry, 82 (15). pp. 6395-6400.

[img]
Preview
PDF (Application_of_Unsupervised_Chemometric_Analysis_and_Self-organizing_Feature_Map_(SOFM)_for_the_Classification_of_Lighter_Fuels_ABSTRACT.pdf)
Application_of_Unsupervised_Chemometric_Analysis_and_Self-organizing_Feature_Map_(SOFM)_for_the_Classification_of_Lighter_Fuels_ABSTRACT.pdf

Download (43kB) | Preview

Abstract

A variety of lighter fuel samples from different manufacturers (both unevaporated and evaporated) were analysed using conventional gas chromatography-mass spectrometry (GC-MS) analysis. In total 51 characteristic peaks were selected as variables and subjected to data pre-processing prior to subsequent analysis using unsupervised chemometric analysis (PCA and HCA) and a SOFM artificial neural network. The results obtained revealed that SOFM acted as a powerful means of evaluating and linking degraded ignitable liquid sample data to their parent unevaporated liquids.