Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Application of unsupervised chemometric analysis and self-organising feature map (SOFM) for the classification of lighter fuels

Mat Desa, Wan N.S. and NicDaeid, N. and Dzulkiflee, Ismail and Savage, Kathleen (2010) Application of unsupervised chemometric analysis and self-organising feature map (SOFM) for the classification of lighter fuels. Analytical Chemistry, 82 (15). pp. 6395-6400.

[img]
Preview
PDF (Application_of_Unsupervised_Chemometric_Analysis_and_Self-organizing_Feature_Map_(SOFM)_for_the_Classification_of_Lighter_Fuels_ABSTRACT.pdf)
Application_of_Unsupervised_Chemometric_Analysis_and_Self-organizing_Feature_Map_(SOFM)_for_the_Classification_of_Lighter_Fuels_ABSTRACT.pdf - Accepted Author Manuscript

Download (43kB) | Preview

Abstract

A variety of lighter fuel samples from different manufacturers (both unevaporated and evaporated) were analysed using conventional gas chromatography-mass spectrometry (GC-MS) analysis. In total 51 characteristic peaks were selected as variables and subjected to data pre-processing prior to subsequent analysis using unsupervised chemometric analysis (PCA and HCA) and a SOFM artificial neural network. The results obtained revealed that SOFM acted as a powerful means of evaluating and linking degraded ignitable liquid sample data to their parent unevaporated liquids.