Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Application of unsupervised chemometric analysis and self-organising feature map (SOFM) for the classification of lighter fuels

Mat Desa, Wan N.S. and NicDaeid, N. and Dzulkiflee, Ismail and Savage, Kathleen (2010) Application of unsupervised chemometric analysis and self-organising feature map (SOFM) for the classification of lighter fuels. Analytical Chemistry, 82 (15). pp. 6395-6400.

[img]
Preview
PDF (Application_of_Unsupervised_Chemometric_Analysis_and_Self-organizing_Feature_Map_(SOFM)_for_the_Classification_of_Lighter_Fuels_ABSTRACT.pdf)
Application_of_Unsupervised_Chemometric_Analysis_and_Self-organizing_Feature_Map_(SOFM)_for_the_Classification_of_Lighter_Fuels_ABSTRACT.pdf

Download (43kB) | Preview

Abstract

A variety of lighter fuel samples from different manufacturers (both unevaporated and evaporated) were analysed using conventional gas chromatography-mass spectrometry (GC-MS) analysis. In total 51 characteristic peaks were selected as variables and subjected to data pre-processing prior to subsequent analysis using unsupervised chemometric analysis (PCA and HCA) and a SOFM artificial neural network. The results obtained revealed that SOFM acted as a powerful means of evaluating and linking degraded ignitable liquid sample data to their parent unevaporated liquids.