Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Ranking ligand affinity for the DNA minor groove by experiment and simulation

Wittayanarakul, Kitiyaporn and Anthony, N.G. and Treesuwan, Witcha and Hannongbua, Supa and Alniss, Hasan and Khalaf, A.I. and Suckling, C.J. and Parkinson, J.A. and Mackay, Simon P. (2010) Ranking ligand affinity for the DNA minor groove by experiment and simulation. Medicinal Chemistry Letters, 1 (8). pp. 376-680. ISSN 1948-5875

[img]
Preview
PDF
Mackay_Manuscript_6_2_10.pdf - Preprint

Download (309kB) | Preview

Abstract

The structural and thermodynamic basis for the strength and selectivity of the interactions of minor-groove binders (MGBs) with DNA is not fully understood. In 2003 we reported the first example of a thiazole containing MGB that bound in a phase shifted pattern that spanned 6 base-pairs rather than the usual 4 (for tricyclic distamycin-like compounds). Since then, using DNA footprinting, nuclear magnetic resonance spectroscopy, isothermal titration calorimetry and molecular dynamics, we have established that the flanking bases around the central 4 being read by the ligand have subtle effects on recognition. We have investigated the effect of these flanking sequences on binding and the reasons for the differences and established a computational method to rank ligand affinity against varying DNA sequences.