Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Ranking ligand affinity for the DNA minor groove by experiment and simulation

Wittayanarakul, Kitiyaporn and Anthony, N.G. and Treesuwan, Witcha and Hannongbua, Supa and Alniss, Hasan and Khalaf, A.I. and Suckling, C.J. and Parkinson, J.A. and Mackay, Simon P. and , Royal Golden Jubilee Ph.D. Program (Funder) and , Thailand Research Fund (Funder) and , W.T. and EPSRC (Funder) and , Scottish Funding Council (Funder) (2010) Ranking ligand affinity for the DNA minor groove by experiment and simulation. Medicinal Chemistry Letters, 1 (8). pp. 376-680. ISSN 1948-5875

Mackay_Manuscript_6_2_10.pdf - Preprint

Download (309kB) | Preview


The structural and thermodynamic basis for the strength and selectivity of the interactions of minor-groove binders (MGBs) with DNA is not fully understood. In 2003 we reported the first example of a thiazole containing MGB that bound in a phase shifted pattern that spanned 6 base-pairs rather than the usual 4 (for tricyclic distamycin-like compounds). Since then, using DNA footprinting, nuclear magnetic resonance spectroscopy, isothermal titration calorimetry and molecular dynamics, we have established that the flanking bases around the central 4 being read by the ligand have subtle effects on recognition. We have investigated the effect of these flanking sequences on binding and the reasons for the differences and established a computational method to rank ligand affinity against varying DNA sequences.