Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Hydrophilic hypercrosslinked polymeric sorbents for the solid-phase extraction of polar contaminants from water

Bratkowska, D. and Fontanals, N. and Borrull, F. and Cormack, P.A.G. and Sherrington, D.C. and Marce, R.M. (2010) Hydrophilic hypercrosslinked polymeric sorbents for the solid-phase extraction of polar contaminants from water. Journal of Chromatography A, 1217 (19). pp. 3238-3243. ISSN 0021-9673

[img]
Preview
PDF (strathprints027540.pdf)
strathprints027540.pdf

Download (616kB) | Preview

Abstract

Three new hypercrosslinked polymers with hydrophilic character arising from hydroxyl moieties in their skeletons have been prepared in microsphere format and applied to the off-line solid-phase extraction (SPE) of polar compounds from water samples. For sample volumes of 1000 ml, the recoveries of various polar pesticides, such as oxamyl, methomyl, selected phenolic compounds, as well as some pharmaceuticals, were close to 90%. The HXLPP-polar polymer with the best performance characteristics was applied to real samples. Its performance was also compared to commercially available sorbents, such as LiChrolut EN (hydrophobic, hypercrosslinked), Oasis HLB (hydrophilic, macroporous) and Isolute ENV+ (hydrophilic, hypercrosslinked); the new sorbent out-performed the commercially available sorbents. The polymer was applied successfully in off-line SPE of river water samples followed by liquid chromatography and ultraviolet detection, providing a good linear range and detection limits of 0.2 μg l-1 for the majority of the compounds, with the exception of oxamyl, methomyl, guaiacol and salicylic acid where the detection limit was 0.5 μg l-1.