Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Observations on the tanh-coth expansion method for finding solutions to nonlinear evolution equations

Parkes, E.J. (2010) Observations on the tanh-coth expansion method for finding solutions to nonlinear evolution equations. Applied Mathematics and Computation, 217. pp. 1749-1754. ISSN 0096-3003

[img]
Preview
PDF (tanh_coth_revised.pdf)
tanh_coth_revised.pdf

Download (95kB) | Preview

Abstract

The 'tanh-coth expansion method' for finding solitary travelling-wave solutions to nonlinear evolution equations has been used extensively in the literature. It is a natural extension to the basic tanh-function expansion method which was developed in the 1990s. It usually delivers three types of solution, namely a tanh-function expansion, a coth-function expansion, and a tanh-coth expansion. It is known that, for every tanh-function expansion solution, there is a corresponding coth-function expansion solution. It is shown that there is a tanh-coth expansion solution that is merely a disguised version of the coth solution. In many papers, such tanh-coth solutions are erroneously claimed to be 'new'. However, other tanh-coth solutions may be delivered that are genuinely new in the sense that they would not be delivered via the basic tanh-function method. Similar remarks apply to tan, cot and tan-cot expansion solutions.