
 
 
 
Coles, A.I. and Smith, A.J. (2005) On the inference and management of 
macro-actions in forward-chaining planning. Proceedings of the 24th UK 
Planning and Scheduling SIG. ISSN 1368-5708 
 
 
 
http://eprints.cdlr.strath.ac.uk/2751/
 
 
 
This is an author-produced version of a paper published in Proceedings 
of the 24th UK Planning and Scheduling SIG. 
 
Strathprints is designed to allow users to access the research 
output of the University of Strathclyde. Copyright © and Moral 
Rights for the papers on this site are retained by the individual 
authors and/or other copyright owners. Users may download 
and/or print one copy of any article(s) in Strathprints to facilitate 
their private study or for non-commercial research. You may not 
engage in further distribution of the material or use it for any 
profitmaking activities or any commercial gain. You may freely 
distribute the url (http://eprints.cdlr.strath.ac.uk) of the Strathprints 
website. 
 
Any correspondence concerning this service should be sent to The 
Strathprints Administrator: eprints@cis.strath.ac.uk 
 

http://eprints.cdlr.strath.ac.uk/2815/


On The Inference and Management of Macro-Actions in Forward-Chaining
Planning

Andrew Coles and Amanda Smith
Department of Computer and Information Sciences,

University of Strathclyde,
26 Richmond Street,
Glasgow, G1 1XH

email:firstname.lastname@cis.strath.ac.uk

Abstract

In this paper we discuss techniques for online gen-
eration of macro-actions as part of the planning
process and demonstrate their use in a forward-
chaining search planning framework. The macro-
actions learnt are specifically created at places in
the search space where the heuristic is not infor-
mative. We present results to show that using
macro-actions generated during planning can im-
prove planning performance.

1 Introduction
Previous work on using macro-actions in planning has used
macro-actions generated in advance of the planning process,
either through additional off-line learning steps—such as
those used by Macro-FF[Boteaet al., 2004]—or through
hand-coding—such as the ‘tasks’ used in hierarchical plan-
ning [Nauet al., 2003]. We present an approach that differs
from previous work in that it is able to infer macro-actions
on-line, during the process of searching for a plan, as well
as being able to handle macros cached from previous plan-
ning problems. The macro-actions inferred specifically aim
to provide search guidance at the points during search where
the heuristic used is unable to provide useful information.

The underlying planning framework in which the macro-
action inference (and use) strategy described in this pa-
per has been developed is forward-chaining heuristic-search.
The search algorithm used is enforced hill-climbing (EHC)
guided by the relaxed planning graph (RPG) heuristic, as in
FF [Hoffmann and Nebel, 2001]. EHC is a gradient-descent
local-search algorithm, using exhaustive search to escape
plateaux. The macro-action inference strategy is an impor-
tant feature of Marvin[Coles and Smith, 2004], a planner
that participated in the Fourth International Planning Com-
petition (IPC4). Marvin extends the search used by FF to
allow exploitation of concurrency, and to provide support for
the inference and use of macro-actions during planning; these
modifications are described in this paper.

2 Terminology
Marvin can handle PDDL[McDermott, 2000; Fox and Long,
2003] planning problems specified using ADL and derived
predicates[Edelkamp and Hoffmann, 2004]. It cannot rea-
son about temporal planning or numeric expressions. Thus,
a planning problem can be defined as a tuple<I, G, A>,

where I and G are conjuncts of literals representing the ini-
tial and goal states, and A is the set of lifted action schemata.
A ground action is one whose parameters have been bound
to specific entities; alifted action has at least one un-bound
parameter. A solutionplan to such a planning problem, as
presented by Marvin, consists a partially-ordered series of
time-stamped, ground, primitive actions.

During search, bothprimitive actions andmacro-actions
are available. Primitive actions are those defined by the ac-
tion schemata in the planning domain; they can be defined by
a tuple<P, E>, where P is an arbitrary well-formed propo-
sitional logic formula detailing the preconditions, and E is a
list of effects the action has (add, delete, or conditional)upon
being applied. Macro-actions can be defined by a tuple<P,
A>, where P is a well-formed propositional logic formula
detailing the preconditions necessary for the applicationof
the macro-action, and A is a plan consisting of lifted actions.
As the primitive actions may have conditional effects, the
external effects of the macro-actions are not known until the
macro-actions are ground.

Marvin makes use of symmetry between objects in the
states that arise during planning. Theequivalence function
used to define the symmetries is thefunctional symmetry de-
fined in[Fox and Long, 1999]: entities are symmetric if they
are of the same type, are described by the same predicates
in the current and goal state, and do not appear (as con-
stants) in the preconditions or effects of any of the opera-
tor schemata. Asymmetry group is a group containing all
mutually-symmetric objects in a given state.

3 Plateau Escaping Macro-Actions
Many planning problems exhibit a large amount of symme-
try: whilst symmetry in the problem instance itself has been
exploited[Fox and Long, 1999; Rintanen, 2003]; it is dif-
ficult to exploit symmetry in solution plans. The difficulty
arises because the final solution plan is not known until the
planning process is complete: as such, during the planning
process, it is not obvious where the symmetry in the solution
plan will be. Symmetry in plans is characterised by recurrent
action sequences. Such sequences represent some underlying
symmetry between objects in the domain: they often occur
because many symmetric objects require the same sequence
of actions to transform them from their initial state into the
final goal state. If potential recurrent action sequences can
be identified during search for a solution plan and encapsu-
lated to form macro-actions a potential reduction in planning
time can be made—particularly if these action sequences are
difficult to find. Also, if a reduced instance of the original



problem is derived, and solved prior to the original problem
instance[Coles and Smith, 2004], the recurrent action se-
quences could be identified on a smaller problem, providing
further gains.

In the process of using EHC to perform forward-chaining
heuristic search, guided by the RPG ‘h+’ heuristic, plateaux
are encountered. Plateaux occur when a local minimum in
the search space has been reached and all successor steps
require either a sideways move (not changing the current
heuristic value) or an uphill move (increasing the current
heuristic value). It is these plateaux that are the core difficulty
encountered when planning in this manner: it is relatively
easy to make progress towards the goal when the heuristic is
being informative; however, the exhaustive search performed
to escape a plateau consumes a great deal of time.

On inspection of the steps required to escape plateaux in
a given domain it is often the case that the same sequence
of actions is used to escape many plateaux, but with differ-
ent parameter bindings. For example, in the depots domain,
from the Third International Planning Competition (IPC3),
the pattern lift-load is frequently used with different ground-
ings of the actions. In the philosophers problem, part of the
Promela domain from IPC4, a complex action sequence is
used many times, once for each pair of philosophers.

As exhaustive search is required to escape from a plateau,
construction of plateau-escaping action sequences is compu-
tationally expensive. Since plateau-escaping sequences of-
ten have similar structure, it is clear that memoising these
action sequences for later use—when plateaux are once-
again encountered—can potentially reduce planning time.
In Marvin the plateau-escaping action sequences are used
to constructplateau-escaping macro-actions. Once devised,
they are made available, as actions, for application on later
plateaux.

3.1 Inferring Plateau-Escaping Macro-Actions
When the start of a plateau is detected—that is, when no
successor state with a strictly-better heuristic value canbe
found—best-first search commences from the current state.
During best-first search, each successor state stores the ac-
tions that have been applied to reach it since the start of the
plateau: when a strictly-better state is eventually found,this
list of actions is the plan segment that forms the basis of the
plateau-escaping macro-action.

In order to make the macro-actions produced as useful
and reusable as possible the plan segment is processed be-
fore being made into a macro-action. Firstly, any indepen-
dent threads of execution that exist in the plan are separated
to produce macro-actions involving as few entities as pos-
sible. As the number of groundings of a macro-action in-
creases with the number of entities in its parameter list, large
macro-actions often become problematic: they increase the
number of successor nodes to each state, causing the search
process to stop making progress. By identifying independent
threads, non-interacting entities are separated, splitting the
macro-action into two or more actions, reducing the number
of ground actions.

Independent threads of execution are identified by inspect-
ing an artificially-created partial-order plan, derived from
the total-order plan segment. In a directed-acyclic-graph
representation of a partial-order plan segment, independent
threads can be identified by extracting independent sub-
graphs. The partial-order is inferred as follows:

• for each precondition in the original plan that is satisfied
by the effect of an earlier action an ordering constraint
(and causal link) is inserted, such that the precondition
must come after its achiever;

• for each mutex action pair A and B in the original plan
segment, with A scheduled before B, an ordering con-
straint is added such that B must occur after A.

When matching preconditions to achievers, the latest
achiever that occurs before the precondition is used. If there
is no earlier action in the plan segment that achieves a given
precondition then no dependency is inserted—the precondi-
tion forms anexternal precondition of the resulting macro-
action.

A forward reachability is computed from each action step
in the partial-order plan; two action sequences are indepen-
dent if they do not share a common reachable action, indi-
cating a common dependency or ordered interaction in the
original plan segment. Any action sequences of unit length
are discarded as these would create single-step macro-actions
which are primitive actions that already exist in the domain.

3.2 The Derivation and Use of Plateau-Escaping
Macro-Actions during Best-First Search

Marvin employs a modified best-first search strategy to find
a solution plan if EHC fails. The modification is that when
a successorS′ to a given search stateS is found with a
strictly better heuristic value, the evaluation of the other suc-
cessors ofS is postponed—S is re-inserted into the search
queue—and search proceeds fromS′ (in conventional best-
first search all successors ofS would be evaluated beforeS′

is expanded).
If all the single-action-step successors of a given state have

been evaluated, and a better state has not yet been found
and expanded, then the best-first search parallel to an EHC
plateau has been reached: an area where all the successor
states have a heuristic value worse, or no better, than the
parent state. In such cases, Marvin considers applying the
previously-generated plateau-escaping macro-actions tothe
state: in doing so, a strictly-better state can potentiallybe
found without the need to explore many single-step actions
to find the same sequence.

Marvin’s mechanism for deriving plateau-escaping macro-
actions is extended to allow their derivation when performing
best-first search. Plateau-escaping macro-actions can be de-
rived through plan analysis: by evaluating what the heuristic
value would be at each step in the plan, segments of the plan
which escaped a plateau can be identified. These segments
of plan initially lead to states with a heuristic value no bet-
ter than that of the best state so far, and eventually lead to a
strictly-better state. During best-first search this plan analy-
sis is performed each time a state is produced with a heuristic
value better than the global-best heuristic value found so far.

As plateau-escaping macro-actions can also be derived
during best-first search, Marvin is not restricted to mak-
ing use of solely the plateau-escaping macro-actions that
could be found during EHC—an important feature in do-
mains where EHC is unable to make any progress.

4 Introducing Concurrency Into
Macro-Actions

During the process of creating macro-actions from a plan
a partial-order is lifted in order to allow the independent



0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120

H
eu

ris
tic

Plan Time Step

Without Macro-Actions
With Macro-Actions

Figure 1: Heuristic Landscape over Makespan, With and
Without Macro-Actions

threads to be identified. Using the partial order it is possible
to introduce concurrency into the macro-actions. As long as
the ordering constraints are respected, action steps the same
distance from the start of a given sub-plan can occur con-
currently. Reasoning about concurrency within the macro-
action is only necessary when the macro-action is created: if
the macro-action is used again it will already have the con-
currency embedded into it.

As Marvin’s concurrency support is disabled when per-
forming exhaustive search to escape a plateau, the macro-
actions provide a means of reducing makespan by allow-
ing concurrent plan segments to be inserted into the plans
where, previously, a sequential plan segment would be de-
vised. Upon escaping each plateau the new parallel plans are
added to the end of the original plan rather than the original,
sequential, plateau-escaping sequence.

5 Planning With Macro-Actions
Although using macro-actions during search has
advantages—they can offer search guidance and allow
many actions to be planned in one step—considering them
during the expansion of each state increases the branching
factor. Thus, if a large number of unproductive macro-
actions are generated the search space will become larger,
making the problem harder, not easier, to solve. Whilst many
of the plateau escaping sequences are helpful in planning,
some are specific to the situation in which they were derived;
a situation which might not occur again in the plan. As
macro-actions are learnt during the planning process—and
there is no human intuition, or large test suite, to allow
reusable macro-actions to be identified—care must be taken
when deciding the points at which to consider their use in
the planning process.

Plateau-escaping macro-actions are generated from situa-
tions in which the heuristic has broken down; therefore, the
heuristic can be used as an indicator of when they are likely
to be useful again during planning. As areas of symmetry
within the solution plan involve the application of similar
(or identical) sequences of actions, they are likely to have
similar heuristic profiles. In the case of plateau-escapingac-
tion sequences, the heuristic profile of the search landscape
at their application is an initial increase (or no-change) of
heuristic value, eventually followed by a fall to below the

initial level: the profile occurring at a local minimum. If the
plateau-escaping macro-actions are to be reusable it is likely
that the re-use will occur when the planning process is in a
similar situation. As such, they are only considered for ap-
plication when searching to escape a plateau, as this is the
situation in which they are most likely to be useful. This is
also the situation in which the planner most needs alternative
search guidance as the heuristic is being uninformative.

In Marvin, as in FF[Hoffmann and Nebel, 2001], only
helpful actions are considered to be applied at each stage to
reduce the branching factor (the helpful actions being those at
the first time step in the relaxed plan from the current state to
the goal state). In a parallel to this, only macro-actions whose
first step is a helpful action are considered for application:
this allows non-helpful macro-actions to be pruned, reducing
the branching factor.

Situations may arise where the use of macro-actions in-
creases the makespan of the resulting plan due to redun-
dant action sequences. For example, if in a simple game
domain—with actions to move up, down, left or right—if
a macro-action is formed for ‘left, left, left, left’ and the
optimal action sequence to escape a given plateau is ‘left,
left, left’ then ‘{left, left, left, left}, right’ may be chosen if
the state reached by moving left four times is heuristically
better than the one reached by applying a single-step ‘left’
action. Such action sequences are not necessarily problem-
atic: they can often be reduced in a post processing step by
removing segments of the plan that occur between identical
states. In directed search spaces, however, the redundant seg-
ments may be difficult to identify, and the remedial actions
necessary to correct the plan may increase the plan length.
This highlights the important balance between solution qual-
ity and techniques to increase the speed with which the prob-
lem can be solved.

Planning with macro-actions has clear advantages, particu-
larly if the macro-actions generated are appropriate to thedo-
main and can be used in situations where the heuristic is un-
able to offer appropriate guidance. Figure 1 shows the value
of the heuristic with and without macro-actions across the
solution plan generated by Marvin for a problem taken from
the philosophers domain (part of the Promela domain from
IPC4) involving 14 philosophers. Initially, no macro-actions
have been learnt so the search done by both approaches is
identical. For the first 14 action choices the value of the
heuristic, shown by the line in the graph, moves monotoni-
cally downwards as the planner is able to find actions to apply
leading to strictly better states.

After time step 14, the heuristic value begins to oscillate,at
this point the planner has reached a plateau: there is no state
with a strictly better heuristic value that can be reached by
the application of just one action. As this is the first plateau
reached, no macro-actions have been generated so the heuris-
tic profiles are identical for both configurations. At time step
25 a state is reached that has a better heuristic value than
that at time step 14; it is at this time that the plateau-escaping
macro-action will be generated, memoising a lifted versionof
the sequence of actions that was used to escape the plateau.
A brief period of search in which a strictly better state can be
found at each choice point follows before the planner again
hits a plateau.

The subsequent six plateaux consist of applying the same
sequence of actions to each pair of philosophers: it can be
seen that the heuristic fingerprints of the plateaux are iden-



tical. The version of Marvin in which macro-actions have
been disabled repeats the expensive exhaustive search at each
plateau: the heuristic value again goes through the process
of increasing and then decreasing again before reaching a
strictly-better state. The version using the plateau-escaping
macro-actions, however, now has a single action to apply that
achieves a strictly better state and search continues, stepping
over the subsequent plateaux through the selection of macro-
actions that yield strictly-better states.

When all of the larger plateaux have been overcome a
series of smaller plateaux are encountered. Again, it can
be seen that for the first of these both versions must com-
plete a stage of exhaustive search; however, after the first of
the smaller plateaux has been completed, the macro-action
formed allows the subsequent plateaux to be bypassed. Fi-
nally, the plan finishes with a previously unseen sequence of
actions, which both versions must do exhaustive search to
compute.

During the search to solve instances of the philosophers
problem using macro-actions a large proportion of the time
was spent in escaping the first plateau for the first time and
the remainder of the plan was computed much more quickly.
In this instance the search for the plan without using macro-
actions took 596 seconds instead of 7 seconds to complete.
As the instances become larger the time taken to complete
each stage of exhaustive search grows dramatically and the
time saved through using macro-actions becomes greater:
without them it is not feasible to solve the larger instances
using Marvin.

5.1 Reasoning About Concurrency
When using single-step actions, Marvin reasons about con-
currency in forward-chaining search by considering, at the
point of the expansion of each state, all actions that can be
applied in parallel with the actions at the current time step
as well as all those that could be applied at the next time
step, where no actions are currently assigned. This approach
works when planning with actions of unit length as there are
only two distinct times for action application: either along-
side or after the last-scheduled action. When macro-actions
are to be integrated into the planning process, however, the
concurrency reasoning is more complex: an action may be
applicable at the same time as any of the scheduled macro-
action steps, as well as after all of the steps, giving a far
greater number of points at which the action could potentially
be applied. It is also necessary to consider the preconditions
of scheduled macro-action steps to ensure that the action to
be applied does not violate any of them, leading to the pro-
duction of unsound plans.

To ensure that the queued macro-action steps remain ap-
plicable, whilst still allowing as much concurrency to be ex-
ploited as is reasonably possible, the time steps over which
each precondition must be maintained is calculated. Unlike
temporal planning, where the invariants are maintained over
the entire action duration, in the case of macro-actions these
invariants may only need to be held true for part of the action
duration. Further, instead of effects being restricted to occur-
ring at the start and end of the action, there are effects that
occur at each time point within it—note that, in the case of
non-temporal planning, time is effectively discretised, with
the single-action steps each taking one unit of time.

The effects and preconditions for scheduled macro-action
steps are held in an ‘event queue’, similar to the one used in

Sapa[Do and Kambhampati, 2001]. The event queue con-
tains the add/delete effects, and positive/negative invariants
for the future-scheduled actions. Any positive/negative pre-
conditions belonging to action steps within a macro-action,
or acting as the conditions for conditional effects within ac-
tion steps, are queued to be held as positive/negative in-
variants from the point at which they are achieved until the
point at which they are required. External preconditions are
marked as invariants from the start of the event queue to the
point at which they are required. An action can be applied at
a given time point alongside a macro-action if it is not mutex
with the cumulative invariants and effects for that point.

6 Caching Macro Actions
During search, Marvin generates macro-actions to use in
solving each problem; in IPC4, they were generated during
the planning process to solve one specific problem, and were
not stored for use when solving later problem instances.

Marvin is capable of saving macro-actions to form a li-
brary of past macro-actions for use when solving other prob-
lem instances in a given domain. This is, in many ways, simi-
lar to case-based planning; the difference is that the library of
past-plans (stored as macro-actions) are only sub-solutions to
past problems, not whole solutions, storing only how a weak-
ness in the heuristic was circumvented.

As in all plan libraries, a library management strategy is
needed. When macro-actions are stored, they are annotated
with two numbers: the total number of times they have been
used so far, and how many problem files have been solved
since they were last used. By storing how many problem
files have been solved since given macro-action was last used
it is possible to purge macro-actions from the library if they
have not been used in solving any recent problem files. This
is useful in domains where a phase-transition occurs as in-
creasingly harder problems are tackled, rendering earlier-
discovered macro-actions ineffective. Using the information
about the number of times each macro-action has been used,
the macro-actions are, when loaded, ordered in descending
order of past usage: this means that popular macro-actions
are evaluated first and used in preference to less-popular
ones.

7 Results
In this section we present results that show that the perfor-
mance of the planner can be greatly improved by the use of
macro-actions; we also demonstrate that the overheads of us-
ing macro-actions do not necessarily adversely affect plan-
ning performance if the macro-actions are carefully man-
aged.

Figure 2 shows the improved performance of Marvin when
using macro-actions in the philosophers domain from IPC4.
It can be seen that when macro-actions are cached there is a
large performance improvement; the oscillation that can be
seen is a result of different macro-actions being required for
problems with odd numbers of philosophers than for those
with even numbers of philosophers.

Inferring the plateau-escaping macro-actions on a per-
instance basis brings substantial performance gains: once
the periods of exhaustive search have been completed, the
macro-actions inferred can be re-used and the remainder of
the problem solved relatively quickly. Without the plateau-
escaping macro-actions the exhaustive search step needs to



0.01

0.1

1

10

100

1000

10000

5 10 15 20 25 30 35 40 45

T
im

e 
ta

ke
n 

(s
)

Task no.

No Macro-Actions
Macro-Actions

Cached Macro-Actions

Figure 2: Coverage With and Without Macro-Actions in the
Philosophers Domain

be replaced many times, increasing the time taken to solve
the problems.

Further performance gains are made when the macro-
actions are cached between problem instances. When using
only per-instance macros, Marvin is unable to solve any in-
stances above number 33 within the alloted 30-minute time
limit: this is because the first period of exhaustive search be-
comes too expensive to complete within the time limit, so the
essential plateau-escaping macro-action is not formed. Ifthe
macro-actions are cached from earlier instances, all the prob-
lems in the set can be solved: the macro-actions necessary to
bypass the plateaux are available at the start of search, having
been derived on the easier problems.

The plan produced to solve each problem instance in the
philosophers domain can be split into three ordered sec-
tions: an ‘activate-trans’ action per philosopher; interleav-
ings of the first macro-action (the macro-action discovered
to escape the first plateau) with the same single-step action
(with differing groundings each time) trivially found to pro-
vide a strictly-better state through heuristic guidance; in-
terleavings of the second macro-action with single-step ac-
tions, again trivially found. Once the two macro-actions have
been acquired, EHC does not need to perform any plateau-
escaping exhaustive search: the plateau-escaping macro-
actions ‘patch’ the heuristic to allow it to always proceed to
a strictly-better state. Thus, the macro-actions discovered in
this domain lead to significant performance gains.

Figure 3 shows the performance of Marvin in the
pipesworld-notankage-nontemporal domain from IPC4. The
four configurations illustrated demonstrate the performance
without macro actions; with only per-instance macro-actions;
caching macro-actions which have been used in the past two
problem instances; and caching macro-actions that have been
used in the past four problem instances. The four configu-
rations were able to solve 26, 33, 39 and 35 problems re-
spectively. It can be seen that the performance of the plan-
ner when using macro-actions is sensitive to the window
over which they are kept. At one extreme, with little or no
caching, it can be difficult to repeatedly establish the same
set of core, useful, macro-actions. At the other, non-useful
macro-actions can accumulate and slow down planning per-
formance. In this domain, caching macro-actions used over
the past two problem instances gives better coverage and

0.01

0.1

1

10

100

1000

10000

5 10 15 20 25 30 35 40 45 50

se
c.

task nr.

No Macro Actions
Non-cached Macro Actions

Keep for 2 Problem Instances
Keep For 4 Problem Instances

Figure 3: Coverage With and Without Macro-Action
Caching in the Pipesworld Domain

faster performance in most of the problems than the other
two configurations. The optimal interval over which to keep
macro-actions varies, depending on the domain.

A summary of the results of running Marvin on a number
of different domains is shown in Figure 4. The management
and use of cached macro-actions was done in the way de-
scribed in section 6. It can be seen that using per-instance,
and cached, macro-actions reduces planning time across a
number of domains. The potential for the increase in plan
length caused by using macro-actions has little effect, with
the makespan in most domains being similar when the plan-
ner is run in all three configurations. In some domains the
length of the plans produced is, on average, shorter when us-
ing per-instance or cached macro-actions. In such cases, the
macro-actions are offering a previously found, shorter, route
through the search space which the heuristic would not nor-
mally suggest in that situation.

Figure 5 shows the results of running paired t-tests to
ascertain whether performance improvements are signifi-
cant with 95% confidence. For all domains, excluding the
philosophers domain, the performance improvement gained
by using macro-actions is significant. In the philosophers
domain it is not possible to prove significance to the required
confidence level as the configuration not using macro-actions
is unable to solve a sufficient number of problems within the
time limit. It can, however be seen from figure 2 that the
performance, and in particular coverage, of the planner are
improved when using macro-actions, with further improve-
ments when the macro-actions are cached.

8 Conclusions

We have described an approach to deriving and using macro-
actions in a forward-chaining planning framework. The
macro-actions are derived on-line, on a per-instance basis,
and can also be cached for later use. To evaluate the effec-
tiveness of the macro-actions formed, the approach described
was implemented in a planner, Marvin.

Empirical evaluation shows that generating macro-actions
on a per-instance basis is able to reduce the time taken to
find solution plans in a number of planning domains; further
gains can be made by caching the macros between problem
instances, pruning those which do not appear to be useful.



Domain Problems Solved
Coverage Mean Improvement

(%) Time (s) Makespan
airport NMA 80 0 0
airport MA 84 4.99 9.00
airport C 94 3.96 2.84

depots NMA 68 0 0
depots MA 73 85.58 -7.00
depots C 73 182.90 -3.2

philosophers NMA 29 0 0
philosophers MA 63 75.40 0
philosophers C 100 92.00 0

pipes-notankageNMA 52 0 0
pipes-notankageMA 60 13.27 -0.56
pipes-notankageC 70 16.23 0.21

satellite NMA 89 0 0
satellite MA 89 28.35 1.72
satellite C 89 32.85 2.81

Figure 4: Performance on Different Domains Using the Dif-
ferent Configurations: NMA—no macro-actions, MA—per-
instance Macro-Actions, C—caching Macro-Actions. Mean
improvement figures are the mean of the differences between
the result achieved with no macro-actions and the chosen
configuration: they are calculated only for instances solved
in both configurations

Domain M.A.vs Caching vs Caching vs
No M.A. M.A. No M.A.

n t sig? n t sig? n t sig?
airport 39 5.69 Yes 42 2.94 Yes 39 4.22 Yes
depots 14 2.17 Yes 15 4.70 Yes 15 3.85 Yes

philosophers 14 1.44 No 30 5.48 Yes 14 1.68 No
pipes- 25 2.67 Yes 28 2.87 Yes 24 2.24 Yes

notankage
satellite 32 2.77 Yes 32 2.60 Yes 32 2.74 Yes

Figure 5: Performance on Different Domains Using the Dif-
ferent Configurations: M.A. is used as an abbreviation for
Macro-Actions; n is the number of problems solved byboth
of the configurations being considered; and t is the t-value
obtained from a paired t-test comparing the two. Significance
to 95% confidence is shown in the sig? column.

References

[Boteaet al., 2004] A. Botea, M. Muller, and J Schaeffer.
Using component abstraction for automatic generation of
macro-actions. InProceedings of ICAPS-04, pages 181–
190, 2004.

[Coles and Smith, 2004] A.I. Coles and A.J. Smith. Mar-
vin: Macro-actions from reduced versions of the instance.
IPC4 Booklet, ICAPS 2004, June 2004. Extended Ab-
stract.

[Do and Kambhampati, 2001] Minh B. Do and S. Kamb-
hampati. Sapa: A domain-independent heuristic metric
temporal planner. InProceedings of ECP 2001, 2001.

[Edelkamp and Hoffmann, 2004] S. Edelkamp and J. Hoff-
mann. PDDL2.2: The language for the classical part of
IPC-4. IPC4 Booklet, ICAPS 2004, 2004.

[Fox and Long, 1999] M. Fox and D. Long. The detection
and exploitation of symmetry in planning problems. In
IJCAI, pages 956–961, 1999.

[Fox and Long, 2003] M. Fox and D. Long. PDDL2.1: An
extension of PDDL for expressing temporal planning do-
mains.Journal of AI Research, 20:61–124, 2003.

[Hoffmann and Nebel, 2001] J. Hoffmann and B. Nebel.
The FF planning system: Fast plan generation through
heuristic search. Journal of AI Research, 14:253–302,
2001.

[McDermott, 2000] D. McDermott. The 1998 AI planning
systems competition. InAI Magazine 2, pages 35–55,
2000.

[Nauet al., 2003] D.S. Nau, T.C. Au, O. Ilghami, U. Kuter,
J.W. Murdock, D. Wu, and F. Yaman. SHOP2: An HTN
planning system.Journal of AI Research, 20:379–404,
2003.

[Rintanen, 2003] J. Rintanen. Symmetry reduction for SAT
representations of transition systems. InProceedings of
ICAPS 03, pages 32–40, 2003.


