. IH
I"-. MNIVERSITY OF
'\ 3 TRATHCLYDE

N GEASGORY

Coles, A.l. and Smith, A.J. (2005) On the inference and management of
macro-actions in forward-chaining planning. Proceedings of the 24th UK
Planning and Scheduling SIG. ISSN 1368-5708

http://eprints.cdlr.strath.ac.uk/2751/

This is an author-produced version of a paper published in Proceedings
of the 24th UK Planning and Scheduling SIG.

Strathprints is designed to allow users to access the research
output of the University of Strathclyde. Copyright © and Moral
Rights for the papers on this site are retained by the individual
authors and/or other copyright owners. Users may download
and/or print one copy of any article(s) in Strathprints to facilitate
their private study or for non-commercial research. You may not
engage in further distribution of the material or use it for any
profitmaking activities or any commercial gain. You may freely
distribute the url (http://eprints.cdlr.strath.ac.uk) of the Strathprints
website.

Any correspondence concerning this service should be sent to The
Strathprints Administrator: eprints@cis.strath.ac.uk

http://eprints.cdlr.strath.ac.uk/2815/

On The Inference and Management of M acro-Actionsin Forward-Chaining
Planning

Andrew Coles and Amanda Smith
Department of Computer and Information Sciences,
University of Strathclyde,
26 Richmond Street,
Glasgow, G1 1XH
email:fi rst nane. | ast name@i s. strath. ac. uk

Abstract where | and G are conjuncts of literals representing the ini-

_))) tial and goal states, and A is the set of lifted action schamat
In this paper we discuss techniques for online gen- A ground action is one whose parameters have been bound
eration of macro-actions as part of the planning to specific entities; 4ifted action has at least one un-bound
process and demonstrate their use in a forward- parameter. A solutioplan to such a planning problem, as
chaining search planning framework. The macro- presented by Marvin, consists a partially-ordered serfes o
actions learnt are specifically created at places in time-stamped, ground, primitive actions.
the search space where the heuristic is not infor- During search, botlprimitive actions and macro-actions
mative. We present results to show that using are available. Primitive actions are those defined by the ac-
macro-actions generated during planning can im- tjon schemata in the planning domain; they can be defined by
prove planning performance. a tuple<P, B>, where P is an arbitrary well-formed propo-

sitional logic formula detailing the preconditions, andskai
. list of effects the action has (add, delete, or conditionpn
1 Introduction being applied. Macro-actions can be defined by a tupfe

Previous work on using macro-actions in planning has used” > Where P is a well-formed propositional logic formula

macro-actions generated in advance of the planning prpces¢/étailing the preconditions necessary for the applicatibn
either through additional off-line learning steps—such as the macro-action, and A is a plan consisting of lifted acion
those used by Macro-F[Boteaet al., 2004—or through ~ AS the primitive actions may have conditional effects, the
hand-coding—such as the ‘tasks’ used in hierarchical p|an_external effects of the macro-actions are not known ungil th

ning [Nauet al., 2003. We present an approach that differs Macro-actions are ground. , ,
from previous work in that it is able to infer macro-actions __ Marvin makes use of symmetry between objects in the

on-line, during the process of searching for a plan, as wellStates that arise during planning. Téguivalence function

as being able to handle macros cached from previous plan¥Sed to define the symmetries is fuectional symmetry de-

ning problems. The macro-actions inferred specifically aim fined in[Fox and Long, 199 entities are symmetric if they

to provide search guidance at the points during search wher&'€ Of the same type, are described by the same predicates

the heuristic used is unable to provide useful information. 1N the current and goal state, and do not appear (as con-
The underlying planning framework in which the macro- stants) in the preconditions or effects of any of the opera-

action inference (and use) strategy described in this pa-tor schemata. /symmetry group is a group containing all

per has been developed is forward-chaining heuristicebear mutually-symmetric objects in a given state.

The search algorithm used is enforced hill-climbing (EHC) . .

guided by the relaxed planning graph (RPG) heuristic, as in3 Plateau Escaping Macro-Actions

FF [Hoffmann and Nebel, 2001EHC is a gradient-descent Many planning problems exhibit a large amount of symme-

local-search algorithm, using exhaustive search to escapéry: whilst symmetry in the problem instance itself has been

plateaux. The macro-action inference strategy is an impor-exploited[Fox and Long, 1999; Rintanen, 2003t is dif-

tant feature of MarvirfColes and Smith, 2004a planner ficult to exploit symmetry in solution plans. The difficulty

that participated in the Fourth International Planning Gom arises because the final solution plan is not known until the

petition (IPC4). Marvin extends the search used by FF toplanning process is complete: as such, during the planning

allow exploitation of concurrency, and to provide supportf process, it is not obvious where the symmetry in the solution

the inference and use of macro-actions during planninggthe plan will be. Symmetry in plans is characterised by recurren

modifications are described in this paper. action sequences. Such sequences represent some urglerlyin
symmetry between objects in the domain: they often occur

; because many symmetric objects require the same sequence

2 Terminology of actions to transform them from their initial state int@ th

Marvin can handle PDDIMcDermott, 2000; Fox and Long, final goal state. If potential recurrent action sequences ca

2003 planning problems specified using ADL and derived be identified during search for a solution plan and encapsu-

predicatedEdelkamp and Hoffmann, 20041t cannot rea- lated to form macro-actions a potential reduction in plagni

son about temporal planning or numeric expressions. Thustime can be made—particularly if these action sequences are

a planning problem can be defined as a tuplel, G, A>, difficult to find. Also, if a reduced instance of the original

problem is derived, and solved prior to the original problem e for each precondition in the original plan that is satisfied

instance[Coles and Smith, 20Q4the recurrent action se- by the effect of an earlier action an ordering constraint
guences could be identified on a smaller problem, providing (and causal link) is inserted, such that the precondition
further gains. must come after its achiever;

In the process of using EHC to pen“orr,n forward-chaining o for each mutex action pair A and B in the original plan
heuristic search, guided by the RPG ‘h+’ heuristic, plateau segment, with A scheduled before B, an ordering con-

are encountered. Plateaux occur when a local minimum in gtraint is added such that B must occur after A.
the search space has been reached and all successor ste\%

equie eihr a sdenays move (not changing the curenty (" IS, precendtions 1o achievers, e et
heuristic value) or an uphill move (increasing the current b :

heuristic value). Itis these plateaux that are the corecditfy is no ear_li.er action in the plan segment that achieves a givep
encountered when planning in this manner: it is relatively precondition then no dependency is inserted—the precondi-

easy to make progress towards the goal when the heuristic igon forms anexernal precondition of the resulting macro-

being informative; however, the exhaustive search peréarm ac,tﬁl\ofr(]).rward reachability is computed from each action ste
to escape a plateau consumes a great deal of time. Y P P

On inspection of the steps required to escape plateaux i the partial-order plan; two action sequences are indepen

a given domain it is often the case that the same sequencggt?rt] if ;hgzn?r?lgr?t dsehagr? daer(]:((:)m(;rrw%r: dr:?e?jh?r\t;fr;cctgfr?’ir:nt?];
of actions is used to escape many plateaux, but with differ- 9 b Y

ent parameter bindings. For example, in the depots domaing:ggﬁ(l:grlgg dsggrt?]igg véc?all dag:g);tesgﬁlu?gg?: O;gggear::%th
from the Third International Planning Competition (IPC3), 9 p

the pattern lift-load is frequently used with different gra- which are primitive actions that already exist in the domain

ings of the actions. In the philosophers problem, part of the3 2 The Derivation and Use of Plateau-Escaping
Promela domain from IPC4, a complex action sequence is M acro-Actions during Best-First Search

used many times, once for each pair of philosophers. , o , '
As exhaustive search is required to escape from a IolateauMarvm employs a modified best-first search strategy to find

construction of plateau-escaping action sequences isgomp a solution plan if EHC fails. The modification is that when

y , ! .
tationally expensive. Since plateau-escaping sequerfees Oztr?éjtfcgit%fhé(l)Jr%t?c!vvear;uze?r:ghe\?;?lﬁtilcs)nfggtnhde \gntlh f_i
ten have similar structure, it is clear that memoising these y '

. cessors ofS is postponed-S is re-inserted into the search
action sequences for later use—when plateaux are once- § is postp ~

again encountered—can potentially reduce planning time'qrusetusZ;z‘Eil?esizccheggggseg(fil;;;%mgg g\?;}‘ﬁ?gggilfggt'
In Marvin the plateau-escaping action sequences are useg

to construciplateau-escaping macro-actions. Once devised, I5 expanded,).

they are made available, as actions, for application om late b Ifall thelsmgge-act:jon-st:ep success?]rs ofaglvenbstale Pa d
plateaux. een evaluated, and a better state has not yet been foun

and expanded, then the best-first search parallel to an EHC

3.1 Inferring Plateau-Escaping M acro-Actions plateau has been reached: an area where all the successor

. . states have a heuristic value worse, or no better, than the
When the start of a plateau is detected—that is, when no

it ictiv-b heuristi e e parent state. In such cases, Marvin considers applying the
?uccgssgr st?te wit ahstrlct y-better feurls;'ﬂC Valuelan nreviously-generated plateau-escaping macro-actiotiseto
ound—best-first search commences from the current stat€giaia- jn ‘doing so, a strictly-better state can potentiady

During best-first search, gach successor state stores he ag, |ng without the need to explore many single-step actions
tions that have been applied to reach it since the start of thg finq the same sequence.

plateau: when a strictly-better state is eventually fouhis, Marvin's mechanism for deriving plateau-escaping macro-
list of actions IS the plan segment that forms the basis of the, (s js extended to allow their derivation when perfomgni
plateau-escaping macro-action. best-first search. Plateau-escaping macro-actions caa-be d
rived through plan analysis: by evaluating what the heiarist
Falue would be at each step in the plan, segments of the plan
which escaped a plateau can be identified. These segments
of plan initially lead to states with a heuristic value no-bet
ter than that of the best state so far, and eventually lead to a

fore being made into a macro-action. Firstly, any indepen-
dent threads of execution that exist in the plan are sephrate
to produce macro-actions involving as few entities as pos-

sible. As .'[I:]ehnumbeg of %rour_u_jmgs .Of a macro-a(l;tlon In- strictly-better state. During best-first search this plaalg
creases with the number of entities in its parameter lis§ela s i performed each time a state is produced with a heuristi

macro-actions often become problematic: they increase th‘i’/ﬁlue better than the global-best heuristic value foundso f
number of successor nodes to each state, causing the search,g plateau-escaping macro-actions can also be derived

process to stop making progress. By identifying independen g, ,ing- pest-first search, Marvin is not restricted to mak-

threads, n.on-!nteracting entities are sepgratgd, f}gime b ing use of solely the plateau-escaping macro-actions that
macro-action into two or more actions, reducing the number. 4 pe found during EHC—an important feature in do-

of ground actions. : :
. . - . mains where EHC is unable to make any progress.
Independent threads of execution are identified by inspect- y prog

ing an artificially-created partial-order.plan, derive_d)rf'r 4 Introducing Concurrency Into

the total-order plan segment. In a directed-acyclic-graph :

representation of a partial-order plan segment, indepgnde Macro-Actions

threads can be identified by extracting independent sub-During the process of creating macro-actions from a plan
graphs. The partial-order is inferred as follows: a partial-order is lifted in order to allow the independent

v v v v v] initial level: the profile occurring at a local minimum. Ifgh
plateau-escaping macro-actions are to be reusable ieiy lik

s | 1 that the re-use will occur when the planning process is in a
similar situation. As such, they are only considered for ap-
plication when searching to escape a plateau, as this is the

40

30

| | situation in which they are most likely to be useful. This is
£ also the situation in which the planner most needs altermati
gor 1 search guidance as the heuristic is being uninformative.

In Marvin, as in FF[Hoffmann and Nebel, 2091 only
helpful actions are considered to be applied at each stage to
10f 1 reduce the branching factor (the helpful actions beingelabs
the first time step in the relaxed plan from the current state t
the goal state). In a parallel to this, only macro-actioneseh
‘ ‘ ‘ With Magro-Actons —w— first step is a helpful action are considered for application
° ® © pan e sep 100 120 this allows non-helpful macro-actions to be pruned, regci

the branching factor.

Figure 1: Heuristic Landscape over Makespan, With and Situations may arise where the use of macro-actions in-
Without Macro-Actions creases the makespan of the resulting plan due to redun-
dant action sequences. For example, if in a simple game
domain—with actions to move up, down, left or right—if
a macro-action is formed for ‘left, left, left, left’ and the
optimal action sequence to escape a given plateau is ‘left,
left, left’ then ‘{left, left, left, left}, right’ may be chosen if
the state reached by moving left four times is heuristically
better than the one reached by applying a single-step ‘left’
action. Such action sequences are not necessarily problem-
currency embedded into it. atic: they can often be reduced in a post processing step by

removing segments of the plan that occur between identical

As Marvin’s concurrency support is disabled when per- :
forming exhaustive search to escape a plateau, the macros-tates' In directed search spaces, however, the reduregant s

. ' ! ments may be difficult to identify, and the remedial actions
actions provide a means of reducing makespan by allow-

ing concurrent plan segments to be inserted into the plan necessary to correct the plan may increase the plan length.

where, previously, a sequential plan segment would be de?rms highlights the important balance between solutior-qua

vised. Upon escaping each plateau the new parallel plans arity and techniques to increase the speed with which the prob-

added to the end of the original plan rather than the original Fen;lgzri]rr]“kr)]e \?v(i)tlx?l(wjz.icro-actions has clear advantages. particu
sequential, plateau-escaping sequence. 9 ges, p

larly if the macro-actions generated are appropriate tothe
. . . main and can be used in situations where the heuristic is un-
5 Planning With Macro-Actions able to offer appropriate guidance. Figure 1 shows the value
Although using macro-actions during search has of the heuristic with and without macro-actions across the
advantages—they can offer search guidance and allowsolution plan generated by Marvin for a problem taken from
many actions to be planned in one step—considering thenthe philosophers domain (part of the Promela domain from
during the expansion of each state increases the branchintPC4) involving 14 philosophers. Initially, no macro-amts
factor. Thus, if a large number of unproductive macro- have been learnt so the search done by both approaches is
actions are generated the search space will become largeidentical. For the first 14 action choices the value of the
making the problem harder, not easier, to solve. Whilst manyheuristic, shown by the line in the graph, moves monotoni-
of the plateau escaping sequences are helpful in planninggally downwards as the planner is able to find actions to apply
some are specific to the situation in which they were derived;leading to strictly better states.
a situation which might not occur again in the plan. As After time step 14, the heuristic value begins to oscillate,
macro-actions are learnt during the planning process—andhis point the planner has reached a plateau: there is re stat
there is no human intuition, or large test suite, to allow with a strictly better heuristic value that can be reached by
reusable macro-actions to be identified—care must be takerthe application of just one action. As this is the first platea
when deciding the points at which to consider their use in reached, no macro-actions have been generated so the-heuris
the planning process. tic profiles are identical for both configurations. At timest
Plateau-escaping macro-actions are generated from situa25 a state is reached that has a better heuristic value than
tions in which the heuristic has broken down; therefore, thethat at time step 14; it is at this time that the plateau-ascap
heuristic can be used as an indicator of when they are likelymacro-action will be generated, memoising a lifted versibn
to be useful again during planning. As areas of symmetrythe sequence of actions that was used to escape the plateau.
within the solution plan involve the application of similar A brief period of search in which a strictly better state can b
(or identical) sequences of actions, they are likely to havefound at each choice point follows before the planner again
similar heuristic profiles. In the case of plateau-escapittg hits a plateau.
tion sequences, the heuristic profile of the search lanédscap The subsequent six plateaux consist of applying the same
at their application is an initial increase (or no-change) o sequence of actions to each pair of philosophers: it can be
heuristic value, eventually followed by a fall to below the seen that the heuristic fingerprints of the plateaux are-iden

threads to be identified. Using the partial order it is pdssib

to introduce concurrency into the macro-actions. As long as
the ordering constraints are respected, action steps the sa

distance from the start of a given sub-plan can occur con-
currently. Reasoning about concurrency within the macro-
action is only necessary when the macro-action is created: i
the macro-action is used again it will already have the con-

tical. The version of Marvin in which macro-actions have SapalDo and Kambhampati, 2001 The event queue con-

been disabled repeats the expensive exhaustive searahat eatains the add/delete effects, and positive/negative iants

plateau: the heuristic value again goes through the procesfor the future-scheduled actions. Any positive/negatire p

of increasing and then decreasing again before reaching &onditions belonging to action steps within a macro-agtion

strictly-better state. The version using the plateauqdgga or acting as the conditions for conditional effects withaa a

macro-actions, however, now has a single action to appty thation steps, are queued to be held as positive/negative in-

achieves a strictly better state and search continuegistgp variants from the point at which they are achieved until the

over the subsequent plateaux through the selection of macropoint at which they are required. External preconditiores ar

actions that yield strictly-better states. marked as invariants from the start of the event queue to the
When all of the larger plateaux have been overcome apoint at which they are required. An action can be applied at

series of smaller plateaux are encountered. Again, it cana given time point alongside a macro-action if it is not mutex

be seen that for the first of these both versions must com-with the cumulative invariants and effects for that point.

plete a stage of exhaustive search; however, after the first o

the smaller plateaux has been completed, the macro-actiog Caching Macro Actions

formed allows the subsequent plateaux to be bypassed. Fi-

= . . .
nally, the plan finishes with a previously unseen sequence OPulrlng sea[]ch, l\éllarw.n_ gleggzat?hs macro-actlonsttc()j gse_ in
actions, which both versions must do exhaustive search tgo. /N9 €ach probiem, in , they were generated during
compute. he planning process to solve one specific problem, and were

During the search to solve instances of the phiIosopher§q0't/|5tor.ed.for usetz/lvher; solving later probtllem n:st?nces. i
problem using macro-actions a large proportion of the timeb arvfm |stcapa € Ot' sawfng macr?]-ac |or|15_ 0 ?r:m a 'E)
was spent in escaping the first plateau for the first time and rary of past macro-actions for use wnen sowing other prou-

the remainder of the plan was computed much more quickly.Iem Instancesina glven_do.maln._Thls IS, In many ways, simi-
In this instance the search for the plan without using macro-Iar to case-based planning; the (jlfference is that ‘herWﬁ
actions took 596 seconds instead of 7 seconds to completef.)aSt'IOIanS (stored as macro-actions) are only Sub-sobin
As the instances become larger the time taken to completé’aSt problems, npt_whole S.OIUt'OnS’ storing only how a weak-
each stage of exhaustive search grows dramatically and th8ess i the heuristic was circumvented.

time saved through using macro-actions becomes greater: As in all plan libraries, a library management strategy is
without them it is not feasible to solve the larger instances heeded. When macro-actions are stored, they are annotated

using Marvi with two numbers: the total number of times they have been
g Marvin.)
used so far, and how many problem files have been solved

5.1 Reasoning About Concurrency since they were last used. By storing how many problem
. . . . files have been solved since given macro-action was last used
When using single-step actions, Marvin reasons about con

currency in forward-chaining search by considering, at theIt Is possible to purge macro-actions from the library ifythe

. :) have not been used in solving any recent problem files. This
point of _the éxpansion of each. state, all actions thgt can b‘?s useful in domains where a phase-transition occurs as in-
applied in parallel with the actions at the current time step creasingly harder problems are tackled, rendering earlier

as well as all those that could be applied at the next ime ;¢ ered macro-actions ineffective. Using the inforiomat
step, where no actions are cuyrently asslgned. This aplproacabout the number of times each macro-action has been used,
works when planning with actions of unit length as there are the macro-actions are, when loaded, ordered in descending

oir:jly tv;/o g'?t't?]‘:t Itlmtes fhor daﬁngn a'[[i)pqufil/t\ll?]ninerghe: agtpr;i n order of past usage: this means that popular macro-actions
side or after the ‘ast-scheduied action. €N Macro-a&hon 50 eyaluated first and used in preference to less-popular

are to be integrated into the planning process, however, the ¢
concurrency reasoning is more complex: an action may be '
applicable at the same time as any of the scheduled macro-
action steps, as well as after all of the steps, giving a far7 Results
greater number of points at which the action could potdgtial In this section we present results that show that the perfor-
be applied. It is also necessary to consider the preconditio mance of the planner can be greatly improved by the use of
of scheduled macro-action steps to ensure that the action tanacro-actions; we also demonstrate that the overheads of us
be applied does not violate any of them, leading to the pro-ing macro-actions do not necessarily adversely affect-plan
duction of unsound plans. ning performance if the macro-actions are carefully man-
To ensure that the queued macro-action steps remain apaged.
plicable, whilst still allowing as much concurrency to be ex Figure 2 shows the improved performance of Marvin when
ploited as is reasonably possible, the time steps over whichusing macro-actions in the philosophers domain from IPCA4.
each precondition must be maintained is calculated. Unlikelt can be seen that when macro-actions are cached there is a
temporal planning, where the invariants are maintained ove large performance improvement; the oscillation that can be
the entire action duration, in the case of macro-actionsghe seen is a result of different macro-actions being requioed f
invariants may only need to be held true for part of the action problems with odd numbers of philosophers than for those
duration. Further, instead of effects being restrictedcituo- with even numbers of philosophers.
ring at the start and end of the action, there are effects that Inferring the plateau-escaping macro-actions on a per-
occur at each time point within it—note that, in the case of instance basis brings substantial performance gains: once
non-temporal planning, time is effectively discretisedthw the periods of exhaustive search have been completed, the
the single-action steps each taking one unit of time. macro-actions inferred can be re-used and the remainder of
The effects and preconditions for scheduled macro-actionthe problem solved relatively quickly. Without the plateau
steps are held in an ‘event queue’, similar to the one used inescaping macro-actions the exhaustive search step needs to

10000 T T T T T T

10000 T T T T T T T T T

T T T
No Macro-Actions —+—
Cached Macro-Actions ---#---

1000 F B 1000 |

100 F 100 |

Time taken (s)
=
S

/
01 01

No Macro Actions —+—

Keep for 2 Problem Instances «+#::+
Keep For 4 Problem Instances &
L ! L n

0.01

L L L L L L L L L 0.01 L L L L L
5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 50
Task no. task nr.

Figure 2: Coverage With and Without Macro-Actions in the Figure 3: Coverage With and Without Macro-Action
Philosophers Domain Caching in the Pipesworld Domain

be replaced many times, increasing the time taken to solvefaster performance in most of the problems than the other
the problems. two configurations. The optimal interval over which to keep
Further performance gains are made when the macro4macro-actions varies, depending on the domain.
actions are cached between problem instances. When using A summary of the results of running Marvin on a number
only per-instance macros, Marvin is unable to solve any in- of different domains is shown in Figure 4. The management
stances above number 33 within the alloted 30-minute timeand use of cached macro-actions was done in the way de-
limit: this is because the first period of exhaustive seamsh b scribed in section 6. It can be seen that using per-instance,
comes too expensive to complete within the time limit, so the and cached, macro-actions reduces planning time across a
essential plateau-escaping macro-action is not formetelf number of domains. The potential for the increase in plan
macro-actions are cached from earlier instances, all thie-pr length caused by using macro-actions has little effecth wit
lems in the set can be solved: the macro-actions necessary tihe makespan in most domains being similar when the plan-
bypass the plateaux are available at the start of searcimghav ner is run in all three configurations. In some domains the
been derived on the easier problems. length of the plans produced is, on average, shorter when us-
The plan produced to solve each problem instance in theing per-instance or cached macro-actions. In such cases, th
philosophers domain can be split into three ordered secmacro-actions are offering a previously found, shortasteo
tions: an ‘activate-trans’ action per philosopher; irgad- through the search space which the heuristic would not nor-
ings of the first macro-action (the macro-action discoveredmally suggest in that situation.
to escape the first plateau) with the same single-step action Figure 5 shows the results of running paired t-tests to
(with differing groundings each time) trivially found togr ascertain whether performance improvements are signifi-
vide a strictly-better state through heuristic guidanae; i cant with 95% confidence. For all domains, excluding the
terleavings of the second macro-action with single-step ac philosophers domain, the performance improvement gained
tions, again trivially found. Once the two macro-actiongda by using macro-actions is significant. In the philosophers
been acquired, EHC does not need to perform any plateaudomain it is not possible to prove significance to the reglire
escaping exhaustive search: the plateau-escaping macraonfidence level as the configuration not using macro-astion
actions ‘patch’ the heuristic to allow it to always proceed t is unable to solve a sufficient number of problems within the
a strictly-better state. Thus, the macro-actions discvér time limit. It can, however be seen from figure 2 that the
this domain lead to significant performance gains. performance, and in particular coverage, of the planner are
Figure 3 shows the performance of Marvin in the improved when using macro-actions, with further improve-
pipesworld-notankage-nontemporal domain from IPC4. Thements when the macro-actions are cached.
four configurations illustrated demonstrate the perforoean
Witho_ut macro actiqns; with only per-instance m_acro—atsio 8 Conclusions
caching macro-actions which have been used in the past two
problem instances; and caching macro-actions that have beeWe have described an approach to deriving and using macro-
used in the past four problem instances. The four configu-actions in a forward-chaining planning framework. The
rations were able to solve 26, 33, 39 and 35 problems re-macro-actions are derived on-line, on a per-instance basis
spectively. It can be seen that the performance of the plan-and can also be cached for later use. To evaluate the effec-
ner when using macro-actions is sensitive to the windowtiveness of the macro-actions formed, the approach destrib
over which they are kept. At one extreme, with little or no was implemented in a planner, Marvin.
caching, it can be difficult to repeatedly establish the same Empirical evaluation shows that generating macro-actions
set of core, useful, macro-actions. At the other, non-usefu on a per-instance basis is able to reduce the time taken to
macro-actions can accumulate and slow down planning per{ind solution plans in a number of planning domains; further
formance. In this domain, caching macro-actions used overmains can be made by caching the macros between problem
the past two problem instances gives better coverage anéhstances, pruning those which do not appear to be useful.

Domain Problems Solved [Fox and Long, 1999 M. Fox and D. Long. The detection
Coverage | Mean Improvement and exploitation of symmetry in planning problems. In
_ (%) | Time(s) | Makespan IJCAI, pages 956-961, 1999.
a;rii)o(;trtNMMAA gg 4%9 9%0 [Fox and Long, 2003 M. Fox and D. Long. PDDL2.1: An
P ' ' extension of PDDL for expressing temporal planning do-
airport C 94 3.96 2.84 :)
mains.Journal of Al Research, 20:61-124, 2003.
depots NMA 68 0 0
depots MA 73 85.58 -7.00 [Hoffmann and Nebel, 2001J. Hoffmann and B. Nebel.
depots C 73 182.90 3.2 The FF planning system: Fast plan generation through
philosophers NMA 29 0 0 heuristic search. Journal of Al Research, 14:253-302,
philosophers MA 63 75.40 0 2001.
philosophers C 100 92.00 0 [McDermott, 2009 D. McDermott. The 1998 Al planning
pipes-notankag®lMA 52 0 0 systems competition. Il Magazine 2, pages 35-55,
pipes-notankag®A 60 13.27 -0.56 2000.
p'pef'ﬂ.‘:ta&"agf ;(9) 160'23 0'021 [Nauet al., 2009 D.S. Nau, T.C. Au, O. lighami, U. Kuter,
S:a?ellli?e MA 89 28 35 172 J.W. Murdock, D. Wu, and F. Yaman. SHOP2: An HTN
satellite C 89 3285 >'81 ggaglgmg system. Journal of Al Research, 20:379-404,

Figure 4: Performance on Different Domains Using the Dif- [Rintanen, 200B J. Rintanen. Symmetry reduction for SAT

ferent Configurations: NMA—no macro-actions, MA—per-
instance Macro-Actions, C—caching Macro-Actions. Mean
improvement figures are the mean of the differences between
the result achieved with no macro-actions and the chosen
configuration: they are calculated only for instances sblve
in both configurations

Domain M.A.vs Cachingvs Caching vs
No M.A. M.A. No M.A.

n| t |(sg?|n| t |sg?|n| t |sig?
airport | 39(5.69| Yes|42|2.94| Yes| 39| 4.22| Yes
depots |14|2.17| Yes|15|4.70| Yes| 15| 3.85| Yes

philosopherg 14| 1.44| No | 30(5.48| Yes| 14| 1.68| No
pipes- |25|2.67| Yes|28|2.87| Yes|24|2.24| Yes
notankage
satellite |32|2.77| Yes|32|2.60| Yes| 32| 2.74| Yes

Figure 5: Performance on Different Domains Using the Dif-
ferent Configurations: M.A. is used as an abbreviation for
Macro-Actions; n is the number of problems solvedidogh

of the configurations being considered; and t is the t-value
obtained from a paired t-test comparing the two. Signifieanc
to 95% confidence is shown in the sig? column.

References

[Boteaet al., 2004 A. Botea, M. Muller, and J Schaeffer.
Using component abstraction for automatic generation of
macro-actions. IfProceedings of ICAPS-04, pages 181—
190, 2004.

[Coles and Smith, 2004A.I. Coles and A.J. Smith. Mar-
vin: Macro-actions from reduced versions of the instance.
IPC4 Booklet, ICAPS 2004, June 2004. Extended Ab-
stract.

[Do and Kambhampati, 200IMinh B. Do and S. Kamb-
hampati. Sapa: A domain-independent heuristic metric
temporal planner. liProceedings of ECP 2001, 2001.

[Edelkamp and Hoffmann, 20045. Edelkamp and J. Hoff-
mann. PDDL2.2: The language for the classical part of
IPC-4. IPC4 Booklet, ICAPS 2004, 2004.

representations of transition systems. Piroceedings of
ICAPS 03, pages 32-40, 2003.

