Picture of scraped petri dish

Scrape below the surface of Strathprints...

Explore world class Open Access research by researchers at the University of Strathclyde, a leading technological university.

Explore

Predicting blade vortex interaction, airloads and acoustics using the vorticity transport model

Kelly, Mary E. and Duraisamy, Karthikeyan and Brown, Richard (2008) Predicting blade vortex interaction, airloads and acoustics using the vorticity transport model. In: 9th American Helicopter Society Aeromechanics Specialists' Meeting, 2008-01-23 - 2008-01-25.

[img]
Preview
PDF (Brown_RE_-_strathprints_-_Predicting_blade_vortex_interaction_airloads_and_acoustics_using_vorticity_transport_model_Jan_08.pdf)
Brown_RE_-_strathprints_-_Predicting_blade_vortex_interaction_airloads_and_acoustics_using_vorticity_transport_model_Jan_08.pdf

Download (3MB) | Preview

Abstract

Interactions between the blades and vortical structures within the wake of a helicopter rotor are a significant source of impulsive loading and noise, particularly in descending flight. Advances in the prediction and understanding of such blade vortex interactions have been aided in recent years by the extensive experimental dataset made available through the HART test programme. Brown's Vorticity Transport Model was used to predict the rotor blade loading, the resultant wake system and the acoustic noise radiation for the HART II rotor. The vorticity conserving properties of the Vorticity Transport Model allow the detailed wake features that are associated with blade vortex interactions to be resolved. The experimental airload data, in particular the higher harmonic loading associated with blade vortex interactions, is matched well by the computations. The computed vorticity distribution in the wake also shows good correlation with the experimentally measured vortex positions. Including a representation of the fuselage within the computation yields marked improvement in the prediction of the vortex positions compared to similar calculations with an isolated rotor. An accoustic analysis, based on a Ffowcs-Williams Hawkings approach, is able to predict accurately the locations of the sound pressure maxima and the upstream attenuation of the sound radiated by the rotor. The principal discrepancies in airload, vortex position and acoustic prediction are confined almost exclusively to the rear of the advancing side of the rotor and, if errors in measuring the blade deflection can be discounted, may be due to minor inaccuracies in modelling the roll-up of the wake.