Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Wake structure and kinematics in the vortex ring state

Ahlin, G.A. and Brown, R.E. (2009) Wake structure and kinematics in the vortex ring state. Journal of the American Helicopter Society, 54 (3). ISSN 0002-8711

[img]
Preview
PDF (strathprints027488.pdf)
strathprints027488.pdf

Download (6MB) | Preview

Abstract

High-resolution computational simulations of the vortical wake of a rotor operating both near to and within the vortex ring state have been conducted using Brown's vorticity transport model. The nonlinear vortex kinematics of the wake is exposed using three-dimensional visualizations of the simulated flow field. To reveal the vortex dynamics that underpin the highly unsteady flow within the vortex ring state, a rotor with just one blade was modeled. This blade was decoupled aerodynamically from the surrounding velocity field so that it acted merely as a source of trailed vorticity. The investigation identified a significant change in the dominant dynamics of the wake as it swapped fromthe tubular form that is characteristic of hover or very lowspeed descent into the toroidal geometry of the vortex ring state. Initial vortex 'pairing' leads to rotation of vortex filaments away from their original attitude. This phenomenon plays an important role in regulating the downwash that the rotor can produce and thus in precipitating the onset of the vortex ring state. The considerable and persistent coherence of the vortical structure of the wake when in the vortex ring state is revealed, despite these disturbances, as are themechanisms that lead to both small-scale and large-scale wake breakdown events. Simulations show the balance between the vortex pairing and short-wave instability modes to be different in the vortex ring state at high descent speed, where the wake lies above the rotor, compared to in the vortex ring state at low descent speed when the wake lies predominantly below the rotor. This yields subtle differences to the kinematics and structure of the wake in the two cases.