Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Analysis of retrofit air source heat pump performance : results from detailed simulations and comparison to field trial data

Kelly, N.J. and Cockroft, J. (2011) Analysis of retrofit air source heat pump performance : results from detailed simulations and comparison to field trial data. Energy and Buildings, 43 (1). pp. 239-245. ISSN 0378-7788

[img]
Preview
PDF (strathprints027474.pdf)
strathprints027474.pdf

Download (521kB) | Preview

Abstract

In the UK, gas boilers are the predominant energy source for heating in housing, due primarily to the ready availability of natural gas. The take-up of heat pumps has lagged far behind Europe and North America. However, with the development of standards for low and zero-carbon housing, gas price rises and the depletion of the UK's natural gas reserves, interest in heat pump technology is growing. Heat pumps, particularly air source heat pumps (ASHP), have the potential to be a direct, low-carbon replacement for gas boiler systems in housing. In this paper, monitored data and simulations were used to assess the performance of ASHP when retro-fitted into a dwelling. This required the development and calibration of a model of an ASHP device and its integration into a whole-building, dynamic simulation environment. The predictions of the whole-building model were compared to field trial data, indicating that it provided a suitable test bed for energy performance assessment. Annual simulations indicated that the ASHP produced 12% less carbon that an equivalent condensing gas boiler system, but was around 10% more expensive to run. However, the proposed UK renewable heat incentive transforms this situation, with income from ASHP heat generation exceeding the fuel costs.