Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Vorticity-transport and unstructured RANS investigation of rotor-fuselage interactions

Smith, Marilyn J. and Shenoy, Rajiv and Kenyon, Adam R. and Brown, Richard (2009) Vorticity-transport and unstructured RANS investigation of rotor-fuselage interactions. In: 35th European Rotorcraft Forum, 2009-09-22 - 2009-09-25.

[img]
Preview
PDF (strathprints027435.pdf)
strathprints027435.pdf

Download (5MB) | Preview

Abstract

The prediction capabilities of unstructured primitive-variable and vorticity-transport-based Navier-Stokes solvers have been compared for rotorcraft-fuselage interaction. Their accuracies have been assessed using the NASA Langley ROBIN series of experiments. Correlation of steady pressure on the isolated fuselage delineates the differences between the viscous and inviscid solvers. The influence of the individual blade passage, model supports, and viscous effects on the unsteady pressure loading has been studied. Smoke visualization from the ROBIN experiment has been used to determine the ability of the codes to predict the wake geometry. The two computational methods are observed to provide similar results within the context of their physical assumptions and simplifications in the test configuration.