Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


Predicting the wake structure of the HART II rotor using the vorticity transport model

Kelly, Mary E. and Brown, Richard (2008) Predicting the wake structure of the HART II rotor using the vorticity transport model. In: 34th European Rotorcraft Forum, 2008-09-16 - 2008-09-19.

PDF (strathprints027433.pdf)

Download (6MB) | Preview


Brown's Vorticity Transport Model has been used to predict the wake structure and resultant blade loading of the rotor that was studied during the HART II experimental programme. The descending flight condition of the experiment yields significant high-frequency content to the blade loading due to the presence of blade-vortex interactions. PIV images of the wake structure were compared against numerical predictions of the detailed geometry of the rotor wake using three different computational resolutions of the flow. This was done to investigate the origin of inaccuracies exposed in an earlier study of the system in capturing the effects of blade vortex interactions on the loading on the rotor. The predicted positions of the vortex cores agree with measured data to within a fraction of the blade chord, and the strength of the vortices is preserved to well downstream of the rotor, essentially independently of the resolution of the calculation. Nevertheless the amplitude of the loading impulses induced on the blade by vortex interaction are strongly influenced by the resolution of the calculation through the effect of cell density on the minimum vortex core size that can be supported. It would appear thus that the inaccuracies in predicting the high-frequency loading on the rotor are not due to any inherent deficiency in the representation of the wake, although viscous effects may need to be considered in future in order to decouple the vortex core size from the cell size, but rather due to the inherent deficiencies of the lifting line approach used to model the blade aerodynamics.