Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Predicting wind turbine blade loads using vorticity transport and RANS methodologies

Fletcher, Timothy M. and Brown, Richard and Kim, Da Hye and Kwon, Oh Joon (2009) Predicting wind turbine blade loads using vorticity transport and RANS methodologies. In: European Wind Energy Conference and Exhibition, EWEC 2009, 2009-03-16 - 2009-03-19, Marseilles, France.

[img]
Preview
PDF (strathprints027431.pdf)
Download (1292Kb) | Preview

    Abstract

    Two computational methods, one based on the solution of the vorticity transport equation, and a second based on the solution of the Reynolds-Averaged Navier-Stokes equations, have been used to simulate the aerodynamic performance of a horizontal axis wind turbine. Comparisons have been made against data obtained during Phase VI of the NREL Unsteady Aerodynamics Experimental and against existing numerical data for a range of wind conditions. The Reynolds-Averaged Navier-Stokes method demonstrates the potential to predict accurately the flow around the blades and the distribution of aerodynamic loads developed on them. The Vorticity Transport Model possesses a considerable advantage in those situtations where the accurate, but computationally efficient, modelling of the structure of the wake and the associated induced velocity is critical, but where the prediction of blade loads can be achieved with sufficient accuracy using a lifting-line model augmented by incorporating a semi-empirical stall delay model. The largest benefits can be extracted when the two methods are used to complement each other in order to understand better the physical mechanisms governing the aerodynamic performance of wind turbines.

    Item type: Conference or Workshop Item (Paper)
    ID code: 27431
    Keywords: vorticity transport equation, wind turbine blade loads, RANS, aerodynamic performance, Mechanical engineering and machinery, Mechanical Engineering, Aerospace Engineering, Computational Mechanics, Modelling and Simulation
    Subjects: Technology > Mechanical engineering and machinery
    Department: Faculty of Engineering > Mechanical and Aerospace Engineering
    Related URLs:
    Depositing user: Ms Katrina May
    Date Deposited: 10 Sep 2010 12:29
    Last modified: 04 Jun 2014 02:01
    URI: http://strathprints.strath.ac.uk/id/eprint/27431

    Actions (login required)

    View Item

    Fulltext Downloads: