Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

A remark on Schatten-von Neumann properties of resolvent differences of generalized Robin Laplacians on bounded domains

Behrndt, J. and Langer, M. and Lobanov, I. and Lotoreichik, V. and Popov, I. Yu. (2010) A remark on Schatten-von Neumann properties of resolvent differences of generalized Robin Laplacians on bounded domains. Journal of Mathematical Analysis and Applications, 371 (2). pp. 750-758. ISSN 0022-247X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In this note we investigate the asymptotic behavior of the s-numbers of the resolvent difference of two generalized self-adjoint, maximal dissipative or maximal accumulative Robin Laplacians on a bounded domain Ω with smooth boundary ∂Ω. For this we apply the recently introduced abstract notion of quasi boundary triples and Weyl functions from extension theory of symmetric operators together with Krein type resolvent formulae and well-known eigenvalue asymptotics of the Laplace-Beltrami operator on ∂Ω. It is shown that the resolvent difference of two generalized Robin Laplacians belongs to the Schatten-von Neumann class of any order p for which