Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

A remark on Schatten-von Neumann properties of resolvent differences of generalized Robin Laplacians on bounded domains

Behrndt, J. and Langer, M. and Lobanov, I. and Lotoreichik, V. and Popov, I. Yu. (2010) A remark on Schatten-von Neumann properties of resolvent differences of generalized Robin Laplacians on bounded domains. Journal of Mathematical Analysis and Applications, 371 (2). pp. 750-758. ISSN 0022-247X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In this note we investigate the asymptotic behavior of the s-numbers of the resolvent difference of two generalized self-adjoint, maximal dissipative or maximal accumulative Robin Laplacians on a bounded domain Ω with smooth boundary ∂Ω. For this we apply the recently introduced abstract notion of quasi boundary triples and Weyl functions from extension theory of symmetric operators together with Krein type resolvent formulae and well-known eigenvalue asymptotics of the Laplace-Beltrami operator on ∂Ω. It is shown that the resolvent difference of two generalized Robin Laplacians belongs to the Schatten-von Neumann class of any order p for which