Picture of scraped petri dish

Scrape below the surface of Strathprints...

Explore world class Open Access research by researchers at the University of Strathclyde, a leading technological university.

Explore

Limit theorems for random spatial drainage networks

Penrose, M.D. and Wade, A.R. (2010) Limit theorems for random spatial drainage networks. Advances in Applied Probability, 42 (3). pp. 659-688. ISSN 0001-8678

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Suppose that, under the action of gravity, liquid drains through the unit d-cube via a minimal-length network of channels constrained to pass through random sites and to flow with nonnegative component in one of the canonical orthogonal basis directions of Rd, d ≥ 2. The resulting network is a version of the so-called minimal directed spanning tree. We give laws of large numbers and convergence in distribution results on the large-sample asymptotic behaviour of the total power-weighted edge length of the network on uniform random points in (0, 1)d. The distributional results exhibit a weight-dependent phase transition between Gaussian and boundary-effect-derived distributions. These boundary contributions are characterized in terms of limits of the so-called on-line nearest-neighbour graph, a natural model of spatial network evolution, for which we also present some new results. Also, we give a convergence in distribution result for the length of the longest edge in the drainage network; when d = 2, the limit is expressed in terms of Dickman-type variables.