Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

A rational approach to comparing the performance of coaxial and conventional rotors

Kim, Hyo Wan and Brown, R.E. (2009) A rational approach to comparing the performance of coaxial and conventional rotors. Journal of the American Helicopter Society, 55 (1). 012003 1-9. ISSN 0002-8711

[img]
Preview
PDF (Brown_RE_-_strathprints_-_A_rational_approach_to_comparing_the_performacne_ogf_coaxial_and_conventional_rotors_Jan_2010.pdf)
Brown_RE_-_strathprints_-_A_rational_approach_to_comparing_the_performacne_ogf_coaxial_and_conventional_rotors_Jan_2010.pdf

Download (543kB) | Preview

Abstract

The merit, in terms of its efficiency and performance, of the twin, contrarotating coaxial rotor configuration over the more conventional single rotor system has long been a point of contention. Previously published comparisons yield seemingly inconsistent and conflicting conclusions. In this paper, the basis for a fair, like-for-like comparison of the performance of coaxial and single rotor systems is discussed. A comparison between experimentally measured data and numerical predictions of rotor performance obtained using the vorticity transport model shows that a computational approach can be used reliably to decompose the power consumption into induced and profile constituents. These comparisons show that a somewhat stronger similarity in geometry needs to be enforced between the two types of rotor system than previously suggested in order that the systems be directly comparable. If the equivalent single rotor system is constructed to have the same disk area, blade geometry, and total number of blades as that of the coaxial rotor, then the geometric differences between the two systems are confined to the defining characteristics of the two types of rotor system, in other words to the vertical separation between the rotor blades and their relative direction of rotation. The differences in aerodynamic performance between a coaxial rotor and an equivalent single rotor defined in this way then arise solely as a result of the differences in the detailed interaction between the blades and their wakes that arise within the two types of system. Using this form of comparison, the articulated coaxial system is shown to consume marginally less induced power than the equivalent single rotor system. The difference is small enough, however, to be obscured if the profile drag of the blades is overtly sensitive to operating condition, as for instance might be the case at low Reynolds number.