Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

An Audio-based sports video segmentation and event detection algorithm

Baillie, M. and Jose, J.M. (2004) An Audio-based sports video segmentation and event detection algorithm. In: IEEE Workshop on Event Mining 2004: IEEE Computer Vision and Pattern Recognition, 2004-07-02.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In this paper, we present an audio-based event detection algorithm shown to be effective when applied to Soccer video. The main benefit of this approach is the ability to recognise patterns that display high levels of crowd response correlated to key events. The soundtrack from a Soccer sequence is first parameterised using Mel-frequency Cepstral coefficients. It is then segmented into homogenous components using a windowing algorithm with a decision process based on Bayesian model selection. This decision process eliminated the need for defining a heuristic set of rules for segmentation. Each audio segment is then labelled using a series of Hidden Markov model (HMM) classifiers, each a representation of one of 6 predefined semantic content classes found in Soccer video. Exciting events are identified as those segments belonging to a crowd cheering class. Experimentation indicated that the algorithm was more effective for classifying crowd response when compared to traditional model-based segmentation and classification techniques.