Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Understanding the Surface-Enhanced Raman Spectroscopy 'Background'

Mahajan, S. and Cole, R.M. and Speed, J.D. and Pelfrey, S.H. and RUSSELL, Ashley Hilary and Bartlett, P.N. and Barnett, S.M. and Baumberg, J.J. (2009) Understanding the Surface-Enhanced Raman Spectroscopy 'Background'. Journal of Physical Chemistry C, 114 (16). pp. 7242-7250.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Even 35 years after the discovery of surface-enhanced Raman spectroscopy (SERS) much remains to be learned about the phenomenon.(1-3) Despite broad consensus on the mechanism of SERS, many features remain poorly understood and in particular much less effort has been put into understanding the continuum emission called the 'background' observed in SERS spectra. Here the SERS background is studied systematically on sphere segment void (SSV) plasmonic substrates. We establish the physicochemical dependence of the background on plasmons, the identity of the adsorbate, adsorbate coverage and electrochemical potential. In particular, by exchanging electron-donating and electron-withdrawing adsorbates, we demonstrate predictable modulation of the SERS background. Using these observations, we propose a model for the origin of the SERS background. Finally, we test the proposed model against its predictions for anti-Stokes SERS spectra.