Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Understanding the Surface-Enhanced Raman Spectroscopy 'Background'

Mahajan, S. and Cole, R.M. and Speed, J.D. and Pelfrey, S.H. and RUSSELL, Ashley Hilary and Bartlett, P.N. and Barnett, S.M. and Baumberg, J.J. (2009) Understanding the Surface-Enhanced Raman Spectroscopy 'Background'. Journal of Physical Chemistry C, 114 (16). pp. 7242-7250.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Even 35 years after the discovery of surface-enhanced Raman spectroscopy (SERS) much remains to be learned about the phenomenon.(1-3) Despite broad consensus on the mechanism of SERS, many features remain poorly understood and in particular much less effort has been put into understanding the continuum emission called the 'background' observed in SERS spectra. Here the SERS background is studied systematically on sphere segment void (SSV) plasmonic substrates. We establish the physicochemical dependence of the background on plasmons, the identity of the adsorbate, adsorbate coverage and electrochemical potential. In particular, by exchanging electron-donating and electron-withdrawing adsorbates, we demonstrate predictable modulation of the SERS background. Using these observations, we propose a model for the origin of the SERS background. Finally, we test the proposed model against its predictions for anti-Stokes SERS spectra.