Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Modeling the kinetics of enzymic reactions in mainly solid reaction mixtures

Halling, Peter J. and Wilson, Stephen K. and Jacobs, Ralf and McKee, Sean and Coles, Christopher W. (2003) Modeling the kinetics of enzymic reactions in mainly solid reaction mixtures. Biotechnology Progress, 19 (4). pp. 1228-1237. ISSN 8756-7938

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

There is currently considerable interest in using mainly solid reaction mixtures for enzymic catalysis. In these reactions starting materials dissolve into, and product materials crystalize out of, a small amount of liquid phase in which the catalytic reaction occurs. An initial mathematical model for mass transfer effects in such systems is constructed using some physically reasonable approximations. The model equations are solved numerically to determine how the reactant concentrations vary with time and position. To evaluate the extent to which mass transfer limits the overall rate of product formation, an effectiveness factor is defined as the ratio of the observed total reaction rate to the total reaction rate in the reaction limited limit. As expected, the value of the effectiveness factor in steady state is strongly dependent on the Thiele modulus. However, it is also observed that the effectiveness factor can vary widely as a result of changes in the other dimensionless groups characterizing the system. For example, there are situations with Thiele modulus equal to unity in which the value of the effectiveness factor varies between approximately 0.1 and 0.8 as the other parameters are varied in physically reasonable ranges. Analytical asymptotic solutions that provide good approximations to the numerically calculated results in various physically important limiting cases are also presented.