Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Audio-based event detection for sports video

Baillie, M. and Jose, J.M. (2003) Audio-based event detection for sports video. Lecture Notes in Computer Science. ISSN 0302-9743

Full text not available in this repository. (Request a copy from the Strathclyde author)


In this paper, we present an audio-based event detection approach shown to be effective when applied to sports broadcast data. The main benefit of this approach is the ability to recognise patterns that indicate high levels of crowd response which can be correlated to key events. By applying Hidden Markov Model-based classifiers, where the predefined content classes are parameterised using Mel-Frequency Cepstral Coefficients, we were able to eliminate the need for defining a heuristic set of rules to determine event detection, thus avoiding a two-class approach shown not to be suitable for this problem. Experimentation indicated that this is an effective method for classifying crowd response in football matches, thus providing a basis for automatic indexing and summarisation.