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Abstract

The study of discrete-time stochastic processes on the half-line with mean drift at x given by µ1(x)→ 0
as x →∞ is known as Lamperti’s problem. We give sharp almost-sure bounds for processes of this type in
the case where µ1(x) is of order x−β for some β ∈ (0, 1). The bounds are of order t1/(1+β), so the process
is super-diffusive but sub-ballistic (has zero speed). We make minimal assumptions on the moments of the
increments of the process (finiteness of (2 + 2β + ε)-moments for our main results, so fourth moments
certainly suffice) and do not assume that the process is time-homogeneous or Markovian. In the case where
xβµ1(x) has a finite positive limit, our results imply a strong law of large numbers, which strengthens and
generalizes earlier results of Lamperti and Voit. We prove an accompanying central limit theorem, which
appears to be new even in the case of a nearest-neighbour random walk, although our result is considerably
more general. This answers a question of Lamperti. We also prove transience of the process under weaker
conditions than those that we have previously seen in the literature. Most of our results also cover the case
where β = 0. We illustrate our results with applications to birth-and-death chains and to multi-dimensional
non-homogeneous random walks.
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1. Introduction

In a pioneering series of papers [14–16] published in the early 1960s, Lamperti systematically
studied how the asymptotic behaviour of a non-negative real-valued discrete-time stochastic
process with asymptotically zero drift is governed by the (first two) moment functions
of its increments. In the last two decades, there has been renewed interest in Lamperti’s
problem and in particular in its applications to studying the behaviour of complicated multi-
dimensional processes (see e.g. [8,18]). A special case of Lamperti’s problem supported on
Z+ := {0, 1, 2, . . .} is that of asymptotically-zero-drift birth-and-death chains, for which exact
calculations are often possible (using for instance Karlin–McGregor theory [4,12,13]); although
classically well-studied, there has been recent renewed interest in such birth-and-death chains
(see e.g. [5,6]), particularly in the context of modelling random polymers (see e.g. [3,9]). The
study of continuous-time analogues of the general Lamperti problem seems to have begun only
recently: see e.g. [7].

Let us describe Lamperti’s problem informally. Consider a stochastic process X = (X t )t∈Z+
on [0,∞). For now, suppose that X is a time-homogeneous Markov process (that is, a Markov
process with stationary transition probabilities) and that its increment moment functions

µk(x) = E[(X t+1 − X t )
k
| X t = x] (1.1)

are well defined for k ≥ 0; one way to ensure this is to impose a uniform bound on the increments.
(We will relax all of these conditions shortly.) Lamperti’s problem is to determine how the
asymptotic behaviour of X depends upon µ1 and µ2.

Under mild regularity conditions, the behaviour of X is rather standard when, outside some
bounded set, µ1(x) ≡ 0 (the zero-drift case) or µ1(x) is uniformly bounded to one side of 0.
Roughly speaking, in the zero-drift case X behaves like a simple symmetric random walk and is
null-recurrent, in the case of uniformly negative drift X is positive-recurrent with exponentially
decaying stationary distribution, and in the case of uniformly positive drift X is transient with
positive speed (i.e., ballistic).

This motivates the study of the asymptotically-zero-drift regime, in which µ1(x) → 0
as x → ∞, to investigate phase transitions. It turns out that there is a rich spectrum of
possible behaviours of X , governed by µ1 and µ2; we mention heavy-tailed positive-recurrence,
transience with sub-linear rate of escape (diffusive and super-diffusive motion both being
possible), weak convergence to a Bessel process, and so on.

Results of Lamperti [14,16] imply that from the point of view of the recurrence classification
of X , the case where |µ1(x)| is of order x−1 and µ2(x) is of order 1 is critical. In the present
paper we are interested in the supercritical case where µ1(x) is positive and of order x−β ,
β ∈ (0, 1). Here, under mild conditions, transience is assured: our primary interest is to quantify
this transience by studying the rate of escape and accompanying second-order behaviour.

As well as being of interest in their own right, stochastic processes on the half-line with
mean drift asymptotically zero are important for the study of multi-dimensional processes by the
method of Lyapunov-type functions (see e.g. [8]). In this context, it is particularly desirable to
work in some generality without imposing, for instance, assumptions of the Markov property,
a countable state-space, or uniformly bounded increments. Thus we work in more generality
than the model outlined informally above. To start with, the assumption on uniformly bounded
increments can be relaxed, and replaced by an appropriate moments condition. Another important
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relaxation (building on the ideas in Lamperti’s first paper on the topic [14]) is that we do not need
X to be a Markov process. It is invaluable with regard to applications to be able to dispense with
the Markov assumption. The prototypical illustration of this latter point is provided by the case
where X is given by X t = ‖Yt‖, the norm of some multi-dimensional (perhaps Markov but not
necessarily spatially homogeneous) process. If Yt has mean drift zero, X t will typically have
µ1(x)→ 0 as x →∞.

Relaxing the Markov assumption leads to a slight complication in defining the correct
analogues of (1.1), but does not complicate our proofs which are based on general martingale
arguments. The process X will be taken to be adapted to some filtration (Ft )t∈Z+ . Important
families of processes that fit into our framework include non-Markov processes where Ft =

σ(X0, X1, . . . , X t ) and the law of X t+1 depends on the entire previous history of the process, as
well as processes where X t is not Markov by itself, but X t = f (Yt ) for some Markov process Yt
on a general space Σ , a measurable function f : Σ → [0,∞), and Ft = σ(Y0, Y1, . . . , Yt ). The
first of these two situations was treated by Lamperti in [14, Section 3], and the second in [14,
Section 4] (see also [16, Section 5]); we work somewhat more generally.

In the next section, we will describe more precisely the model that we consider and give
our main results. In Section 3, we give two applications of our results to stochastic processes
of interest in their own right. The first is the birth-and-death chain case; even in this classical
setting, some of our results seem to be new. Our second example is a model inaccessible to many
classical methods: a multi-dimensional non-homogeneous random walk. In the latter setting, our
results add to the analysis of MacPhee et al. [17].

2. Model, results, and discussion

2.1. The model and main results

We now introduce our notation and assumptions. Let X = (X t )t∈Z+ be a discrete-time
stochastic process adapted to a filtration (Ft )t∈Z+ and taking values in an unbounded subset
S of [0,∞). In applications S may be countable (e.g. the birth-and-death chain example in
Section 3.1) or uncountable (e.g. the non-homogeneous random walk example in Section 3.2, or
the application to stochastic billiards in [18]); it is thus desirable to make no further restriction
on S .

The central object in all that follows will be the conditional mean increment (the one-step
mean drift) E[X t+1 − X t | Ft ]. Many of the conditions in our theorems will suppose that an
inequality holds involving the Ft -measurable random variables E[X t+1 − X t | Ft ] and X t ; such
inequalities will have to hold a.s. and in an appropriate asymptotic sense (as X t → ∞). It will
be convenient therefore to introduce some notation for upper and lower bounds on the mean
increment E[X t+1 − X t | Ft ] as functions of X t .

Shortly, we will briefly define µ
1
: S → R and µ1 : S → R such that, for all t ∈ Z+,

µ
1
(X t ) ≤ E[X t+1 − X t | Ft ] ≤ µ1(X t ), a.s. (2.1)

If X is a Markov process, E[X t+1 − X t | Ft ] = E[X t+1 − X t | X t ], a.s., and we can take

µ
1
(x) = inf

t∈Z+
E[X t+1 − X t | X t = x], and µ1(x) = sup

t∈Z+
E[X t+1 − X t | X t = x];
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if additionally X is time-homogeneous then µ
1
(x) ≡ µ1(x) ≡ µ1(x), where µk : S → R is

given by

µk(x) = E[(X t+1 − X t )
k
| X t = x] (t ∈ Z+), (2.2)

provided the expectation exists. Loosely speaking, in the general case E[X t+1−X t | Ft ] involves
additional randomness in Ft , once X t has been fixed. Thus µ1(x) should be the (essential)
supremum over this additional randomness given {X t = x}. For µ

1
, the situation is analogous.

Let us now formally define µ
1

and µ1. Suppose that E[X t+1 − X t | Ft ] exists for all t ∈ Z+.
By standard theory of conditional expectations (see e.g. [2, Section 9.1]), for each t ∈ Z+ there
exist a Borel-measurable function φt : S → R and an Ft -measurable random variable ψt such
that E[ψt | X t ] = 0 and, a.s.,

E[X t+1 − X t | Ft ] = E[X t+1 − X t | X t ] + ψt = φt (X t )+ ψt . (2.3)

Set µ1(t; x) := φt (x)+ ψt , an Ft -measurable random variable. Then, for x ∈ S , define

µ1(x) := sup
t∈Z+

ess supµ1(t; x), (2.4)

µ
1
(x) := inf

t∈Z+
ess infµ1(t; x). (2.5)

Provided the expectations in question exist, µ1(x), µ1
(x) are (non-random) R-valued functions

of x ∈ S ; clearly µ1(x) ≥ µ1
(x) for all x ∈ S . Then (2.4) and (2.5) define functions with the

property (2.1). We provide some further discussion of the definitions in (2.4) and (2.5), and give
some illustrative examples, in Section 2.2 below.

In the time-homogeneous Markov case, the statement of our results is simplified, and µ1, µ
1

can be replaced simply by µ1 defined by (2.2) everywhere. One such example, which might also
be useful for orientation purposes, is the birth-and-death chain example described in Section 3.1
below. As mentioned above, in applications, it can be important to dispense with the Markovian
assumption. It often turns out to be the case in applications that, as x →∞, µ1(x) ∼ µ1

(x); the
example in Section 3.2 below demonstrates such a case, and also the importance of not having to
assume a Markov property for X .

Returning to the general setting, for our purposes the most interesting case is when
µ1(x), µ1

(x) → 0 as x → ∞. Results of Lamperti [14,16] show that from the point of view
of the recurrence classification of X , the case where µ1(x), µ1

(x) are of order 1/x is critical
(assuming some natural regularity conditions). Our focus in the present paper is the supercritical
case where µ1(x), µ1

(x) are of order x−β (in the positive direction) for some β ∈ (0, 1).
In this case, Lamperti [14] proved that X is transient (that is, X t → ∞ a.s.) under certain
regularity assumptions; we give a proof of this result under weaker conditions (Theorem 2.1).
Our primary interest, however, is the nature of the transience, in particular the rate of escape,
i.e., the speed at which X t → ∞. The results of this paper give sharp bounds of order t1/(1+β)

for X t (Theorem 2.3), which in the special case where µ1(x) ∼ µ1
(x) ∼ ρx−β imply a strong

law of large numbers (Theorem 2.4) that improves upon results of Lamperti [15] and Voit [24].
We also study the second-order behaviour, obtaining a central limit theorem (Theorem 2.5) to
accompany the law of large numbers. Although not our primary concern, most of our results also
cover the case where β = 0.
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Let us state our basic assumption.

(A0) Let X = (X t )t∈Z+ be a stochastic process on the unbounded set S ⊆ [0,∞) adapted to the
filtration (Ft )t∈Z+ . Suppose that, for some x0 ∈ S , P[X0 ≤ x0 | F0] = 1.

We also assume the following condition.

(A1) Suppose that lim supt→∞ X t = ∞ a.s.

Condition (A1) is necessary for our questions of interest to be non-trivial, and is usually straight-
forward to verify in a particular application: for instance, a sufficient condition is that for any
y ∈ (0,∞) there exist w : Z+→ Z+ and ε > 0 such that

inf
t∈Z+

P[X t+w(t) > y | Ft ] > ε, a.s.

Indeed, if X is an irreducible time-homogeneous Markov chain and S is countable, (A1) holds
automatically. For suitable concepts of irreducibility in more general state-spaces, see [20].

We also need to assume some regularity condition on the increments of X . For our purposes,
we will need a moment bound of the form

sup
t∈Z+

E[|X t+1 − X t |
γ
| Ft ] ≤ B, a.s., (2.6)

for some B <∞ and γ > 0. If (2.6) holds with γ ≥ 1, µ1 and µ
1

given by (2.4) and (2.5) exist
as R-valued functions. Assumption of (2.6) amounts to, in some sense, the choice of a correct
scale for the process X .

Our first result yields transience of the supercritical Lamperti problem.

Theorem 2.1. Suppose that (A0) and (A1) hold, and that there exists β ∈ [0, 1) such that
(2.6) holds for some γ > 1+ β and

lim inf
x→∞

(xβµ
1
(x)) > 0.

Then X is transient, i.e., X t →∞ a.s. as t →∞.

Theorem 2.1 proves transience under weaker conditions than we have seen previously
published; for instance, Lamperti [14, Theorem 3.2] (see also [20, Section 9.5.3]) assumed (2.6)
with γ > 2 and also that E[(X t+1 − X t )

2
| Ft ] ≥ v a.s. for v > 0; Lamperti [14] was mainly

concerned with the critical case (β = 1), where such stronger conditions are natural, but they are
not necessary here, as Theorem 2.1 shows.

Next we move on to our main topic, the quantitative asymptotic behaviour of X . The first
natural question is what bounds we can obtain under conditions of comparable strength to those
in Theorem 2.1. We have the following upper bound.

Theorem 2.2. Suppose that (A0) holds, there exists β ∈ [0, 1) such that

lim sup
x→∞

(xβµ1(x)) <∞,

and (2.6) holds for some γ > 1+ β. Then, for any ε > 0, a.s., for all but finitely many t,

sup
0≤s≤t

Xs ≤ t
1

1+β (log t)
1

1+β+ε. (2.7)
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Next we impose stronger conditions on X in order to obtain a tighter upper bound, as well
as a complementary lower bound. Our bounds will involve the constants λ(a, β) defined for
a ∈ (0,∞), β ∈ (0, 1) by

λ(a, β) := (a(1+ β))
1

1+β . (2.8)

The next result gives sharp almost-sure bounds on X .

Theorem 2.3. Suppose that (A0) and (A1) hold, and that, for some β ∈ [0, 1) and some a, A
∈ (0,∞) with a ≤ A,

a = lim inf
x→∞

(xβµ
1
(x)) ≤ lim sup

x→∞
(xβµ1(x)) = A. (2.9)

Suppose that (2.6) holds for some γ > 2+ 2β. Then, a.s.,

λ(a, β) ≤ lim inf
t→∞

X t

t1/(1+β)
≤ lim sup

t→∞

X t

t1/(1+β)
≤ λ(A, β).

Remark 1. The proof of the upper bound on X t given by Theorem 2.3 only uses the condition
on µ1 in (2.9) and not the condition on µ

1
there.

Note that, since β < 1, certainly taking γ = 4 in (2.6) suffices for Theorem 2.3. Theorem 2.3
implies that in the case β ∈ (0, 1) the transience given in Theorem 2.1 is super-diffusive but sub-
ballistic, since 1/2 < 1/(1+ β) < 1. This should be contrasted with the critically transient case
(β = 1) where the drift is O(x−1) and X is transient, in which case there are upper and lower
bounds for X t of order about t1/2 known under additional conditions, see [18, Section 4.1], where
for instance it is shown in [18, Theorem 4.2] that X t ≥ t1/2(log t)−D for some D ∈ (0,∞) and
all but finitely many t (in the critically transient birth-and-death chain case, certain sharp bounds
are a by-product of the invariance principle of [6]).

An immediate corollary of Theorem 2.3, obtained on taking a = A = ρ, is the following
strong law of large numbers.

Theorem 2.4. Suppose that (A0) and (A1) hold, and that, for some β ∈ [0, 1),

lim
x→∞

xβµ1(x) = lim
x→∞

xβµ
1
(x) = ρ ∈ (0,∞). (2.10)

Suppose that (2.6) holds for some γ > 2+ 2β. Then, as t →∞, a.s.,

X t

t1/(1+β)
−→ λ(ρ, β). (2.11)

Lamperti [15, Theorem 7.1] obtained a weaker version of Theorem 2.4 under more restrictive
conditions. Specifically, [15, Theorem 7.1] assumes that X is a time-homogeneous Markov
process with limx→∞ xβµ1(x) = ρ and supx |µk(x)| < ∞ for all k, where µk is given by
(2.2). Then [15, Theorem 7.1] says that (2.11) holds with convergence in probability. Lamperti
[15, p. 768] asks whether his result “can be strengthened to almost sure convergence”;
Theorem 2.4 answers this affirmatively, and also shows that the assumptions in [15] can be
relaxed to a significant extent. Theorem 2.4 also generalizes a result of Voit [24] in the birth-
and-death chain case: see Section 3.1 below.
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It is natural to ask whether, under the assumptions of Theorem 2.4, there is a central limit the-
orem to accompany the law of large numbers. This question was raised by Lamperti [15, p. 768],
and seems to have remained open even for the case of a birth-and-death chain. The following
result shows that there is a central limit theorem, provided that we impose a somewhat stronger
version of (2.10) and an asymptotic stability condition on the second moments of the increments.

Here and subsequently ‘
d
−→’ denotes convergence in distribution. Unlike our preceding results,

the case β = 0 is excluded from the following theorem.

Theorem 2.5. Suppose that (A0) and (A1) hold, and that, for some β ∈ (0, 1) and ρ ∈ (0,∞),
as x →∞,

µ
1
(x) = ρx−β + o(x−β−

1−β
2 ); µ1(x) = ρx−β + o(x−β−

1−β
2 ). (2.12)

Suppose that (2.6) holds for some γ > 2+ 2β, and that, for some σ 2
∈ (0,∞),

E[(X t+1 − X t )
2
| Ft ] → σ 2, a.s., as t →∞. (2.13)

Then, as t →∞,

X t − λ(ρ, β)t1/(1+β)

t1/2
d
−→ Zσ

√
1+ β

1+ 3β
,

where Z is a standard normal random variable.

2.2. Further remarks on µ
1

and µ1; examples

We now briefly discuss further the definitions in (2.4) and (2.5), and give some examples for
particular classes of process X that should help to clarify the nature of the crucial functions µ

1
and µ1. Recall that

ess supµ1(t; x) = inf{z ∈ R : P[µ1(t; x) > z] = 0},

with a similar expression for ess inf. Some intuitive feeling for the quantitiesµ
1
,µ1 is best gained

by specializing our general framework to some particular families of processes.
Markov processes. If Ft = σ(X0, . . . , X t ) and X is Markov, we have that E[X t+1 − X t | Ft ] =

E[X t+1 − X t | X t ], a.s., so that, with the notation of (2.3),

µ1(t; x) = φt (x) = E[X t+1 − X t | X t = x], a.s.,

for any t . When the state-space S is countable, this last quantity is simply expressed in terms of
the one-step transition probabilities P[X t+1 = y | X t = x]. In the case of general S , µ1(t; x)
can be expressed in terms of a corresponding Markov transition kernel. In either case, we then
have that µ1(x) = supt∈Z+ E[X t+1 − X t | X t = x], with a similar expression for µ

1
(x).

If X is additionally time-homogeneous, E[X t+1 − X t | X t = x] does not depend on t , so
µ1(x) ≡ µ1

(x).
History-dependent processes. Suppose, more generally, that Ft = σ(X0, . . . , X t ) and the law of
X t+1 depends only upon (X0, . . . , X t ). For convenience, take S to be countable. Then we can
write

E[X t+1 − X t | Ft ] =
∑

x0,...,xt∈S
E[X t+1 − X t | X0 = x0, . . . , X t = xt ]

×1{X0 = x0, . . . , X t = xt }.
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This last expression can be written as µ1(t; X t ), where µ1(t; x) is given by∑
x0,...,xt−1∈S

E[X t+1 − X t | X0 = x0, . . . , X t−1 = xt−1, X t = x]

×1{X0 = x0, . . . , X t−1 = xt−1}.

It follows that, in this case,

µ1(x) = sup
t∈Z+

sup
x0,...,xt−1∈S:

P[X0=x0,...,Xt−1=xt−1]>0

E[X t+1 − X t | X0 = x0, . . . , X t−1 = xt−1, X t = x],

with an analogous expression for µ
1
. In the case where S is uncountable, the expressions are

similar but may be understood in terms of regular conditional distributions. This formulation is
essentially used by Lamperti [14, p. 322].

Functions of Markov processes. Suppose that (Yt )t∈Z+ is a Markov process on some state-
space Σ , and that, for some measurable function f : Σ → [0,∞), X t = f (Yt ). Set Ft =

σ(Y0, . . . , Yt ). Then X has state-space S = f (Σ ), and X is typically non-Markovian; see
e.g. [22] for a discussion on the latter point. Now E[X t+1 − X t | Ft ] = E[X t+1 − X t | Yt ],
a.s., and if Σ (hence S ) is countable, we may write

E[X t+1 − X t | Ft ] =
∑
x∈S

∑
y∈Σ : f (y)=x

E[X t+1 − X t | Yt = y]1{Yt = y, X t = x}.

Expressing the latter quantity as µ1(t; X t ) entails

µ1(t; x) =
∑

y∈Σ : f (y)=x

E[X t+1 − X t | Yt = y]1{Yt = y}.

It follows that, in this case,

µ1(x) = sup
t∈Z+

sup
y∈Σ : f (y)=x,P[Yt=y]>0

E[X t+1 − X t | Yt = y],

and similarly for µ
1
. This situation often arises in applications, where f may be, for instance, a

Lyapunov-type function applied to a multi-dimensional process. See the example in Section 3.2
below, as well as [14, Section 4] and [16, Section 5].

2.3. Open problems and paper outline

We finish this section by mentioning some possible directions for future work. A natural ques-
tion is whether Theorem 2.3 holds under a weaker moments condition. Also of interest is whether
any weak limit theory analogous to Theorem 2.5 is available when (2.10) holds but (2.12) does
not.

In [19], an analogue of Lamperti’s problem was considered for processes with E[X t+1 − X t |

X t = x] ≈ cxαt−β , loosely speaking. It seems likely that for appropriate α, β one could obtain
results similar to ours in that setting.

The outline of the remainder of the paper is as follows. In Section 3, we discuss two appli-
cations of our main theorems, specifically to birth-and-death chains (nearest-neighbour random
walks on Z+) in Section 3.1, and to non-homogeneous random walks in Rd in Section 3.2. Sec-
tion 4 is devoted to the proofs of our theorems. In Section 4.1 we give a brief overview of our
proofs. In Section 4.2, 4.3, 4.4 and 4.5, we prove Theorems 2.2, 2.3, 2.5 and 2.1 respectively;
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finally, in Section 4.6, we prove our result (Theorem 3.2) on the non-homogeneous random walk
presented in Section 3.2 below.

3. Applications

3.1. Birth-and-death chains

Suppose that X is an irreducible time-homogeneous Markov chain supported on the countable
set S = Z+ with jumps of size at most 1. Specifically, suppose that there exist sequences
ax , bx , cx (x ∈ N := {1, 2, 3, . . .}) with ax > 0, bx ≥ 0, cx > 0 and ax + bx + cx = 1 for
all x ∈ N. Define the transition law of X for t ∈ Z+ as follows: for x ∈ N,

P[X t+1 = x + 1 | X t = x] = ax ,

P[X t+1 = x | X t = x] = bx ,

P[X t+1 = x − 1 | X t = x] = cx ,

and with reflection from 0 governed by P[X t+1 = 1 | X t = 0] = 1. Of course in this setting
X has uniformly bounded increments, so that (2.6) holds for all γ > 0, and is an irreducible
time-homogeneous Markov chain on Z+, so that (A1) holds as well.

Such an X is known as a birth-and-death chain or birth-and-death random walk. Such
processes have been extensively studied in various contexts, and are often amenable to explicit
computation. Early contributions to the theory of such random walks, particularly to the
recurrence/transience classification, are due to Harris [10] and Hodges and Rosenblatt [11].
Orthogonal polynomials provide one fruitful tool for analysis of such processes (see e.g. [4]
for a survey); this approach dates back at least to Karlin and McGregor [12,13].

For x ∈ N, with µ1(x) and µ2(x) defined by (2.2), we have that

µ1(x) = ax − cx , µ2(x) = 1− bx > 0.

The asymptotically-zero-drift case is the case where limx→∞(ax−cx ) = 0. There is an extensive
literature concerned with various special cases where |xµ1(x)| = O(1). For recent work, we
refer to [3,5,6]; the papers of Csáki, Földes and Révész cited include references to some of the
older literature. We are in the supercritical case if, for β ∈ (0, 1),

lim
x→∞

xβ(ax − cx ) = ρ ∈ (0,∞). (3.1)

In this case, the following law of large numbers is due to Voit [24, Theorem 2.11] (in fact
Voit works in a more general setting of random walks on polynomial hypergroups, which do
not concern us here). Note that there is a misprint in the limiting constant in the statement of
Theorem 2.11 of [24] (the proof there does yield the correct constant): the 1/(1 + α) power
should be applied to the entire limiting expression, not just the µ there; this misprint persists
into [5, Theorem D].

Proposition 3.1 ([24, Theorem 2.11]). Suppose that X is a birth-and-death chain specified by
ax , bx , cx as described above. Suppose that (3.1) holds for β ∈ (0, 1) and ρ ∈ (0,∞). Suppose
also that the two limits

lim
x→∞

ax and lim
x→∞

cx exist in (0, 1) (3.2)

(in which case they must take the same value). Then (2.11) holds.
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Proposition 3.1 is a special case of our Theorem 2.4, under the additional assumption (3.2).
Theorem 2.4 shows that the assumption (3.2) is not necessary for the result: only the mean is
important, not the absolute probabilities of going left or right.

Our Theorem 2.5 above has the following immediate (and apparently new) consequence in the
birth-and-death chain case. Under the assumption that limx→∞ bx = b, (3.2) holds (with limit
1−b

2 for ax and cx ), so this central limit theorem can be seen as the natural companion to Voit’s
law of large numbers [24, Theorem 2.11].

Theorem 3.1. Suppose that X is a birth-and-death chain specified by ax , bx , cx as described
above. Suppose that, for some β ∈ (0, 1) and ρ ∈ (0,∞),

ax − cx = ρx−β + o(x−β−
1−β

2 ); lim
x→∞

bx = b ∈ [0, 1).

Then, as t →∞, for a standard normal random variable Z,

X t − λ(ρ, β)t1/(1+β)

t1/2
d
−→ Z

√
(1− b)(1+ β)

1+ 3β
. (3.3)

We make some final remarks on the case, of secondary interest to us here, where β = 0. Our
Theorem 2.4 applies to the case β = 0, i.e., where ax − cx → ρ ∈ (0, 1] as x → ∞, in which
case our result says that t−1 X t → ρ a.s. as t → ∞. This particular result has been previously
obtained by Pakes [21, Proposition 4], under some more restrictive conditions, including ρ = 1
and bx ≡ 0, and also, for general ρ but again under conditions more restrictive than ours, in a
result of Voit [23, Corollary 2.6]. When β = 0, the second-order behaviour of X is somewhat
different (our Theorem 3.1 does not apply). See for instance [21, Theorem 7] and [23, Theorems
2.7–2.10].

3.2. Rate of escape for a non-homogeneous random walk on Rd

In this section we illustrate the application of our results to a non-homogeneous random walk
model similar to that of [17]. Fix d ∈ {2, 3, . . .}. Let Ξ = (ξt )t∈Z+ be a time-homogeneous
Markov process with state-space an unbounded subset Σ of Rd . The law of the increment
ξt+1 − ξt then depends only on the position of ξt ; this is formalized in general in terms of
Markov transition kernels (see [20, Section 3.4]), so we may use the notation P[ · | ξt = x] for
the conditional distributions and E[ · | ξt = x] for the corresponding expectations.

Write ‖ · ‖ for the Euclidean norm on Rd and 0 for the origin. We use the notation x for a
point of Rd , and, when x 6= 0, x̂ := x/‖x‖ for the corresponding unit vector. We use ‘·’ to denote
the usual scalar product on Rd . We assume that there exist ρ ∈ (0,∞) and β ∈ (0, 1) such that,
for x ∈ Σ ,

E[(ξt+1 − ξt ) · x̂ | ξt = x] = ρ‖x‖−β + o(‖x‖−β), (3.4)

as ‖x‖ → ∞. We will also assume a moment bound on the size of the jumps:

sup
x∈Σ

E[‖ξt+1 − ξt‖
γ
| ξt = x] <∞. (3.5)

By an analysis (presented in Section 4.6) of the process X defined by X t = ‖ξt‖, we will see
that the following result is a consequence of our general Theorems 2.1 and 2.4. The condition
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lim supt→∞ ‖ξt‖ = ∞ a.s. is ensured by, for instance, a reasonable ‘irreducibility’ condition,
such as (A1) in [17] in the case where Σ = Zd .

Theorem 3.2. Suppose that, for some ρ ∈ (0,∞) and β ∈ (0, 1), (3.4) holds and that
lim supt→∞ ‖ξt‖ = ∞ a.s. Then

(i) if (3.5) holds for some γ > 1+ β, ‖ξt‖ → ∞ a.s. as t →∞;
(ii) if (3.5) holds for some γ > 2+ 2β,

‖ξt‖

t1/(1+β)
−→ λ(ρ, β), a.s.,

as t →∞, for λ the constant defined at (2.8).

The qualitative behaviour of non-homogeneous random walks Ξ satisfying (3.4) and (3.5)
of this section was studied under slightly different conditions in [17] (it was assumed there that
Σ = Zd and that the moment bound (3.5) hold for γ = 2). In particular, if we impose an
additional condition on the non-radial drift field such as

sup
u∈Rd :u·x=0, ‖u‖=1

|E[(ξt+1 − ξt ) · u | ξt = x]| = O(‖x‖−β−ε),

for some ε > 0, it was shown in [17, Theorem 2.2] that Ξ has a limiting direction. That is,
there exists a random unit vector u such that ξt/‖ξt‖ → u a.s., as t → ∞. Combined with our
quantitative result, Theorem 3.2(ii), this implies that under the conditions of Theorem 2.2 of [17],
with the stronger condition that (3.5) holds for γ > 2+ 2β,

ξt

t1/(1+β)
−→ uλ(ρ, β), a.s., as t →∞.

4. Proofs of theorems

4.1. Overview of the proofs

In [18, Section 3], general techniques were developed for obtaining almost-sure bounds for
stochastic processes using Lyapunov functions. In [18, Section 4], those techniques were applied
to the critical regime of the Lamperti problem (i.e., drifts of order 1/x at x). The results of
[18, Section 3] are a useful starting point for us, enabling us to prove Theorem 2.2, but they yield
bounds that are considerably less sharp than those that we ultimately require for Theorem 2.3.
The sharp bounds in Theorem 2.3, and the second-order behaviour in Theorem 2.5, require a
different approach. Throughout Sections 4.2–4.4, we work with the process X1+β

t , for which we
can establish sharp estimates (see Lemma 4.3 below). In particular, Doob’s decomposition for
X1+β

t will be the basis for our proofs of Theorems 2.3 and 2.5.
The proof of Theorem 2.1 (in Section 4.5) is somewhat different in flavour, and uses ideas

more closely related to those of Lamperti [14]. The proof of Theorem 3.2 (in Section 4.6)
demonstrates the utility of our general results in dealing with multi-dimensional processes.

4.2. Proof of Theorem 2.2

To prove Theorem 2.2, we will need the following result, contained in [18, Theorem 3.2]. Let
(Yt )t∈Z+ be an (Ft )t∈Z+ -adapted process taking values in an unbounded subset of [0,∞).
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Lemma 4.1. Let B ∈ (0,∞) be such that, for all t ∈ Z+,

E[Yt+1 − Yt | Ft ] ≤ B a.s.

Then, for any ε > 0, a.s., for all but finitely many t ∈ Z+,

sup
0≤s≤t

Ys ≤ t (log t)1+ε.

To prove Theorem 2.2, we will apply Lemma 4.1 to the process Yt = X1+β
t . To show that

this choice of Yt satisfies the hypothesis of Lemma 4.1, we thus need to show that the expected
increment is bounded above. Lemma 4.3 below will take care of this. First we need a technical
estimate. For ease of notation, we write ∆t := X t+1− X t throughout the remainder of the paper.

Lemma 4.2. Suppose that (A0) holds and that (2.6) holds for γ ∈ (0,∞). For any r ∈ (0, γ )
and δ ∈ (0, 1), there exists C ∈ (0,∞) for which, for all t ∈ Z+ and all x ≥ 0,

E
[
|∆t |

r 1{|∆t | ≥ x1−δ
} | Ft

]
≤ C(1+ x)−(γ−r)(1−δ), a.s.

Proof. Suppose that (2.6) holds and fix δ ∈ (0, 1). By Markov’s inequality,

P[|∆t | ≥ x1−δ
| Ft ] ≤ xγ (δ−1)E[|∆t |

γ
| Ft ] = O(xγ (δ−1)), a.s., (4.1)

using (2.6). Now, by Hölder’s inequality, for any r ∈ (0, γ ),

E
[
|∆t |

r 1{|∆t | ≥ x1−δ
} | Ft

]
≤ E[|∆t |

γ
| Ft ]

r
γ P[|∆t | ≥ x1−δ

| Ft ]
1− r

γ

= O(x (γ−r)(δ−1)), a.s.,

using (2.6) and (4.1). �

The next result gives (in part (i)) the desired upper bound for the expected increments of X1+β
t ,

and also provides (in part (ii)) a corresponding lower bound. Part (iii) is a technical estimate on
the higher moments of the increments that we will need later in our proof of Theorem 2.3.

Lemma 4.3. Suppose that (A0) holds and that, for β ∈ [0, 1), γ > 1+ β, (2.6) holds.

(i) Suppose that, for some A ∈ (0,∞), lim supx→∞(x
βµ1(x)) ≤ A. Then, for any ε > 0, there

exists K ∈ (0,∞) such that, for all t ∈ Z+, on {X t > K },

E[X1+β
t+1 − X1+β

t | Ft ] ≤ A(1+ β)+ ε, a.s. (4.2)

(ii) Suppose that, for some a ∈ (0,∞), lim infx→∞(xβµ1
(x)) ≥ a. Then, for any ε > 0, there

exists K ∈ (0,∞) such that, for all t ∈ Z+, on {X t > K },

E[X1+β
t+1 − X1+β

t | Ft ] ≥ a(1+ β)− ε, a.s. (4.3)

(iii) Let r ∈ [1, γ
1+β ). Then there exists C ∈ (0,∞) such that, for all t ∈ Z+,

E[|X1+β
t+1 − X1+β

t |
r
| Ft ] ≤ C Xβr

t , a.s. (4.4)

Proof. In this proof and all of the proofs that follow, C will denote a constant whose value may
change from line to line. Recall that ∆t = X t+1 − X t . First we prove parts (i) and (ii) of the
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lemma. Let δ ∈ (0, 1) and define the event Et := {|∆t | < X1−δ
t }; denote the complement of

Et by Ec
t . The basic idea is as follows. We will show that the difference X1+β

t+1 − X1+β
t can be

written as

(1+ β)Xβt
(
∆t −∆t 1(Ec

t )+ R1(X t ,∆t )
)
+ R2(X t ,∆t ),

where E[|∆t 1(Ec
t )| | Ft ] = o(X−βt ), E[|R1(X t ,∆t )| | Ft ] = o(X−βt ) and E[|R2(X t ,∆t )| |

Ft ] = o(1). Then, on taking expectations, we see that the dominant term is (1+β)Xβt E[∆t | Ft ],
which gives the results in (i) and (ii). In the above display, the term R1 comes from the error
term in the Taylor expansion of (X t + ∆t )

1+β
− X1+β

t on the event Et , while the term R2 is
X1+β

t+1 − X1+β
t on the event Ec

t , which is an event of small probability under our assumption of
(2.6).

We now give the details of the argument sketched above. Since X t+∆t ≥ 0, Taylor’s theorem
with Lagrange form for the remainder implies that

X1+β
t+1 − X1+β

t = (X t +∆t )
1+β
− X1+β

t = (1+ β)Xβt ∆t

(
1+ η

∆t

X t

)β
,

where η = η(X t ,∆t ) ∈ [0, 1]. Since there exists C ∈ (0,∞) such that |(1 + y)β − 1| ≤ C |y|
for all y ∈ [−1, 1], we have that

∆t

(
1+ η

∆t

X t

)β
1(Et ) = ∆t 1(Et )+ R1(X t ,∆t ),

where |R1(X t ,∆t )| ≤ C |∆t |
2 X−1

t 1(Et ) ≤ C |∆t |
1+βX−1+(1−δ)(1−β)

t . Since (2.6) holds for
γ > 1+ β, it follows that

E[|R1(X t ,∆t )| | Ft ] ≤ C X−β−δ(1−β)t = o(X−βt ), (4.5)

as X t →∞, since β < 1. Then we have that

X1+β
t+1 − X1+β

t = (1+ β)Xβt ∆t 1(Et )+ (1+ β)X
β
t R1(X t ,∆t )+ R2(X t ,∆t ), (4.6)

where

R2(X t ,∆t ) = (1+ β)X
β
t ∆t

(
1+ η

∆t

X t

)β
1(Ec

t ). (4.7)

Since on Ec
t we have Xβt ≤ |∆t |

β/(1−δ)
= O(|∆t |

β+δ) for β ∈ [0, 1) and δ > 0 small enough, it
follows that, for small enough δ,

|R2(X t ,∆t )| ≤ C |∆t |
1+β+δ1(Ec

t ), a.s., (4.8)

for some constant C ∈ (0,∞) not depending on t , X t or ∆t . Then, taking expectations in (4.8)
and using the r = 1+ β + δ case of Lemma 4.2, we have that, for t ∈ Z+,

E[|R2(X t ,∆t )| | Ft ] ≤ C(1+ X t )
−(γ−1−β−δ)(1−δ)

= o(1), (4.9)

as X t →∞, taking δ ∈ (0, 1) small enough so that 1+ β + δ < γ . Also, we have that

E[∆t 1(Et ) | Ft ] = E[∆t | Ft ] − E[∆t 1(Ec
t ) | Ft ]

= E[∆t | Ft ] + O(X−(γ−1)(1−δ)
t ), (4.10)
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by the r = 1 case of Lemma 4.2. Since γ > 1 + β, we can choose δ < γ−1−β
γ−1 so that this last

error term is o(X−βt ) as X t → ∞. Then, taking expectations in (4.6) and using (4.5), (4.9) and
(4.10), it follows that, a.s., for all t ∈ Z+,

E[X1+β
t+1 − X1+β

t | Ft ] = (1+ β)X
β
t E[∆t | Ft ] + o(1).

Under the conditions of part (i) of the lemma, we have that E[∆t | Ft ] ≤ (A + o(1))X−βt , as
X t →∞, a.s. Then, (4.2) follows. Similarly, (4.3) follows under the conditions of part (ii) of the
lemma.

It remains to prove part (iii) of the lemma. From (4.6) and (4.8), together with the fact that
|Xβt R1(X t ,∆t )| ≤ C |∆t |

1+β , we have that, for δ > 0,

|X1+β
t+1 − X1+β

t |
r
≤ C

(
Xβt |∆t | + |∆t |

1+β+δ
)r
, a.s.

Since r ≥ 1, Minkowski’s inequality implies that

E[|X1+β
t+1 − X1+β

t |
r
| Ft ] ≤ C

(
Xβt E[|∆t |

r
| Ft ]

1/r
+ E[|∆t |

(1+β+δ)r
| Ft ]

1/r
)r
, a.s.

Taking δ small enough so that (1+β+ δ)r ≤ γ , which we can do since r < γ/(1+β), we have
from (2.6) that both of the expectations on the right-hand side of the last display are uniformly
bounded above. Thus (4.4) follows. �

We can now give the proof of Theorem 2.2.

Proof of Theorem 2.2. Lemma 4.3(i) shows that, under the conditions of Theorem 2.2, it is
legitimate to apply Lemma 4.1 to the process Yt = X1+β

t . This yields the result. �

4.3. Proof of Theorem 2.3

Armed with the estimates in Lemma 4.3, we can now work towards a proof of Theorem 2.3.
The next result shows that, for large t , X1+β

t is, to first order, well approximated by the quantity
At defined by A0 := 0 and for t ∈ N by

At :=

t−1∑
s=0

E[X1+β
s+1 − X1+β

s | Fs]. (4.11)

Under the conditions of Theorem 2.3, At will be seen to grow linearly with t .

Lemma 4.4. Suppose that (A0) holds, that, for β ∈ [0, 1), lim supx→∞(x
βµ1(x)) < ∞, and

that (2.6) holds for some γ > 2+ 2β. Define At by (4.11). Then, as t →∞,

t−1
∣∣∣X1+β

t − At

∣∣∣→ 0, a.s.

Proof. Write Yt := X1+β
t . By Doob’s decomposition (see e.g. [25, p. 120]), taking Dt := E[Yt+1

− Yt | Ft ] and writing At :=
∑t−1

s=0 Ds , we have that (Mt )t∈Z+ , defined by M0 := Y0 and for
t ∈ N by

Mt := Yt − At = Yt −

t−1∑
s=0

Ds, (4.12)
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is a martingale adapted to (Ft )t∈Z+ . Taking expectations in the identity M2
t+1 − M2

t = (Mt+1 −

Mt )
2
+ 2Mt (Mt+1 − Mt ), we see by the martingale property that

E[M2
t+1 − M2

t | Ft ] = E[(Mt+1 − Mt )
2
| Ft ]. (4.13)

Moreover, by (4.12),

E[(Mt+1 − Mt )
2
| Ft ] = E[(Yt+1 − Yt − Dt )

2
| Ft ]

= E[(Yt+1 − Yt )
2
| Ft ] − D2

t , (4.14)

where we have expanded the term (Yt+1− Yt − Dt )
2 and used the fact that Dt is Ft -measurable.

Now, by (4.13), (4.14) and the r = 2 case of (4.4) (which is valid since γ > 2(1+ β)), we have
that, for all t ∈ N,

E[M2
t+1 − M2

t ] = E[E[M2
t+1 − M2

t | Ft ]] ≤ CE[X2β
t ].

Now, since β ∈ [0, 1), Jensen’s inequality implies that

E[X2β
t ] ≤

(
E[X1+β

t ]

) 2β
1+β
= O

(
t

2β
1+β

)
,

by (4.2) and the fact that Y0 is uniformly bounded (from the final part of (A0)). Thus M2
t is a

non-negative submartingale with

E[M2
t ] ≤ E[Y 2

0 ] +

t−1∑
s=0

E[M2
s+1 − M2

s ] = O

(
t

1+3β
1+β

)
,

again using the fact that Y0 is uniformly bounded. Doob’s submartingale inequality (see e.g.
[25, p. 137]) then implies that, for any ε > 0,

P

[
sup

0≤s≤t
M2

s > t
1+3β
1+β +ε

]
≤ t−

1+3β
1+β −εE[M2

t ] = O(t−ε).

Hence the Borel–Cantelli lemma implies that, for any ε > 0, a.s.,

sup
0≤s≤2m

|Ms | ≤ (2m)
1+3β
2+2β+ε,

for all but finitely many m ∈ Z+. Since, for any t ∈ N, we have 2m(t)
≤ t < 2m(t)+1 for some

m(t) ∈ Z+, we have that, for any ε > 0, a.s., for all but finitely many t ∈ Z+,

sup
0≤s≤t

|Ms | ≤ sup
0≤s≤2m(t)+1

|Ms | ≤ (2m(t)+1)
1+3β
2+2β+ε ≤ Ct

1+3β
2+2β+ε,

for some C ∈ (0,∞) not depending on t . Since β < 1, we may take ε small enough so that
1+3β
2+2β + ε ≤ 1− ε. Then, we have that |At − Yt | = O(t1−ε) as t →∞, a.s. �

Remark 2. The decomposition in Lemma 4.4 is central to our proof of Theorem 2.3. Here, the
behaviour of the supercritical case (β < 1) is very different to that of the critical case when β = 1
(see [18, Section 4]) where, even in the transient case, there is no decomposition available into a
dominant ‘drift’ part (like At ) and a smaller ‘variation’ part (like Mt ). Thus proving (particularly
lower) bounds in the critical case needs a rather different approach: see [18].

Now we can complete the proof of Theorem 2.3.
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Proof of Theorem 2.3. Under the conditions of the theorem, we have from Lemma 4.3 that (4.2)
and (4.3) hold. Moreover, we know from Theorem 2.1 that X t →∞ as t →∞, a.s., so that the
ε terms in (4.2) and (4.3) may be taken to be arbitrarily small for all t large enough. Hence, with
At defined by (4.11), we have that, for any ε > 0, a.s.,

a(1+ β)− ε ≤ t−1 At ≤ A(1+ β)+ ε,

for all but finitely many t ∈ Z+. Now, from Lemma 4.4, we have that X1+β
t = At + o(t), a.s., so

that for any ε > 0, a.s.,

a(1+ β)− ε ≤ t−1 X1+β
t ≤ A(1+ β)+ ε,

for all but finitely many t ∈ Z+. This proves the theorem. �

4.4. Proof of Theorem 2.5

The basic ingredients of the proof of Theorem 2.5 are already in place in the decomposition
used in the proof of Lemma 4.4, but we need to revisit some of our earlier estimates and obtain
sharper bounds under the conditions of Theorem 2.5. First, we have the following refinement of
Lemma 4.3 in this case.

Lemma 4.5. Suppose that (A0) holds and that, for β ∈ [0, 1), ρ ∈ (0,∞), (2.12) holds. Suppose
that (2.6) holds for γ > 2+ 2β. Then, as t →∞,

E[X1+β
t+1 − X1+β

t | Ft ] = ρ(1+ β)+ o(t−
1−β

2+2β ), a.s. (4.15)

If, in addition, (2.13) holds for σ 2
∈ (0,∞), then, as t →∞,

E[(X1+β
t+1 − X1+β

t )2 | Ft ] = σ
2(1+ β)2λ(ρ, β)2β t

2β
1+β (1+ o(1)), a.s. (4.16)

Proof. We follow a similar argument to the proof of Lemma 4.3. We again use the notation
Et := {|∆t | < X1−δ

t } and Ec
t for the complementary event. We need to obtain better estimates

for the error terms in (4.6) than we did in the proof of Lemma 4.3. For this reason the δ ∈ (0, 1)
there will not be arbitrarily small, so we cannot use (4.8). Instead, with R2(X t ,∆t ) as defined at
(4.7), since on Ec

t we have Xβt ≤ |∆t |
β/(1−δ) where β < 1, we have that, a.s.,

|R2(X t ,∆t )| ≤ C |∆t |
1+ β

1−δ 1(Ec
t ),

so that, from Lemma 4.2, a.s.,

E[|R2(X t ,∆t )| | Ft ] ≤ C(1+ X t )
(1+ β

1−δ−γ )(1−δ) = C(1+ X t )
1−δ+β−(1−δ)γ .

Now, take δ = 1−β
2 − ε for ε > 0 small enough so that δ > 0. It follows that, provided γ > 2,

we can take ε > 0 small enough so that E[|R2(X t ,∆t )| | Ft ] = o(X
−

1−β
2

t ). Next, recall (see
just above (4.5)) that |Xβt R1(X t ,∆t )| ≤ C Xβ−1

t |∆t |
2. Since (2.6) holds for γ > 2, we can take

expectations to obtain

E[|Xβt R1(X t ,∆t )| | Ft ] = O(Xβ−1
t ) = o(X

−
1−β

2
t ),
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as X t →∞, since β < 1. Moreover, from (4.10), we have that, again taking ε small enough and
using the fact that γ > 2,

E[∆t 1(Et ) | Ft ] = E[∆t | Ft ] + o(X
−β−

1−β
2

t ) = ρX−βt + o(X
−β−

1−β
2

t ), a.s.,

by (2.12). With these sharper bounds, from (4.6) and the present choice of δ, we obtain

E[X1+β
t+1 − X1+β

t | Ft ] = (1+ β)ρ + o(X
−

1−β
2

t ), a.s.

Under the conditions of the lemma, Theorem 2.4 applies, so X t ∼ λ(ρ, β)t
1

1+β . Thus we obtain
(4.15). The argument for (4.16) is similar, starting by squaring (4.6) and then taking δ > 0 small
enough, so we omit the details. �

Lemma 4.6. Suppose that (A0) holds and that, for β ∈ (0, 1), ρ ∈ (0,∞), (2.12) holds. Suppose
that (2.6) holds for γ > 2+ 2β and that (2.13) holds for σ 2

∈ (0,∞). Then, with Mt as defined
at (4.12), we have that, as t →∞,

t−
1+3β
2+2β Mt

d
−→ Zσλ(ρ, β)β

√
(1+ β)3

(1+ 3β)
,

where Z is a standard normal random variable.

Proof. We will apply a standard martingale central limit theorem. Set Mt,s = t−
1+3β
2+2β (Ms −

Ms−1), for 1 ≤ s ≤ t . For fixed t , (Mt,s)s is a martingale difference sequence with E[Mt,s |

Fs−1] = 0. Moreover,

t∑
s=1

E[M2
t,s | Fs−1] = t−

1+3β
1+β

t∑
s=1

E[(Ms − Ms−1)
2
| Fs−1]

= t−
1+3β
1+β

t∑
s=1

(
E[(X1+β

s − X1+β
s−1 )

2
| Fs−1] + O(1)

)
, a.s.,

by (4.14), using the fact that |Ds−1| = O(1) by (4.15). Now, applying (4.16), we obtain

t∑
s=1

E[M2
t,s | Fs−1] = t−

1+3β
1+β σ 2(1+ β)2λ(ρ, β)2β(1+ o(1))

t∑
s=1

s
2β

1+β

= σ 2 (1+ β)
3

1+ 3β
λ(ρ, β)2β + o(1), a.s., (4.17)

where we have used the fact that β > 0 to obtain the o(1) bound in the first equality. We also
need to verify a form of the conditional Lindeberg condition. We claim that, for any ε > 0,

t∑
s=1

E[M2
t,s1{|Mt,s | > ε} | Fs−1] = o(1), a.s., (4.18)

as t →∞. To see this, take p ∈ (2, γ
1+β ). By the elementary inequality |Mt,s |

21{|Mt,s | > ε} ≤

ε2−p
|Mt,s |

p, we have that, for any ε > 0,

E[M2
t,s1{|Mt,s | > ε} | Fs−1] = O(E[|Mt,s |

p
| Fs−1]).
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Then, we have that

E[|Mt,s |
p
| Fs−1] = t−

(1+3β)p
2+2β E[(Ms − Ms−1)

p
| Fs−1]

= t−
(1+3β)p

2+2β E[(X1+β
s − X1+β

s−1 − Ds−1)
p
| Fs−1],

where, by (4.15), |Ds−1| = O(1), and by the r = p case of (4.4),

E[(X1+β
s − X1+β

s−1 )
p
| Fs−1] ≤ C Xβp

s−1 ≤ Cs
βp

1+β , a.s.,

by Theorem 2.4. Hence, by Minkowski’s inequality,

E[|Mt,s |
p
| Fs−1] ≤ Ct−

(1+3β)p
2+2β s

βp
1+β , a.s.,

for some C ∈ (0,∞). Thus, we obtain
t∑

s=1

E[M2
t,s1{|Mt,s | > ε} | Fs−1] ≤ Ct1+ βp

1+β−
(1+3β)p

2+2β , a.s.

From this last bound, we verify (4.18), since p > 2. Given (4.17) and (4.18), we can apply a
standard central limit theorem for martingale differences (e.g. [1, Theorem 35.12, p. 476]) to
complete the proof. �

Proof of Theorem 2.5. Recall the decomposition at (4.12). Under the conditions of the theorem,
Theorem 2.4 and the proof of Lemma 4.4 imply that Mt = o(At ), a.s., so that

X t = (At + Mt )
1

1+β = A
1

1+β
t +

1
1+ β

Mt A
−

β
1+β

t (1+ o(1)).

Here, we have from (4.15) that, a.s., At = ρ(1+ β)t + o(t
1+3β
2+2β ). It follows that, a.s.,

X t = λ(ρ, β)t
1

1+β + o(t1/2)+
1

1+ β
λ(ρ, β)−β t−

β
1+β Mt (1+ o(1)).

Rearranging, we obtain, a.s.,

X t − λ(ρ, β)t
1

1+β

t1/2 =
1

1+ β
λ(ρ, β)−β t−

1+3β
2+2β Mt (1+ o(1))+ o(1).

Now, on letting t →∞, Lemma 4.6 completes the proof. �

4.5. Proof of Theorem 2.1

Our proof of Theorem 2.1 under the minimal moments conditions stated in that theorem
requires some delicate analysis in a similar vein to the estimates in Section 4.3. The key is the
following lemma.

Lemma 4.7. Suppose that (A0) and (A1) hold, and that there exists β ∈ [0, 1) such that
(2.6) holds for γ > 1+ β and

lim inf
x→∞

(xβµ
1
(x)) > 0.

Then there exist ν > 0 and M0 ∈ (0,∞) such that, for all t ∈ Z+, on {X t > M0},

E[(1+ X t+1)
−ν
− (1+ X t )

−ν
| Ft ] ≤ 0, a.s.
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Proof. For ease of notation, write Wt := (1+ X t )
−ν and, as before, ∆t = X t+1 − X t . Note that

our assumption on µ
1

implies that, for some c > 0, E[∆t | Ft ] ≥ cX−βt a.s., for all sufficiently
large X t and all t . Let δ ∈ (0, 1). First, since (1+ x)−ν is a decreasing function of x ≥ 0, for any
x ≥ 0, we have

Wt+1 −Wt ≤ (Wt+1 −Wt )1{|∆t | < x1−δ
} + (Wt+1 −Wt )1{∆t ≤ −x1−δ

}. (4.19)

Moreover,

Wt+1 −Wt = (1+ X t )
−ν

[(
1+

∆t

1+ X t

)−ν
− 1

]
.

Hence, by Taylor’s theorem with Lagrange remainder,

(Wt+1 −Wt )1{|∆t | < X1−δ
t }

= (1+ X t )
−ν

[
−ν

∆t

1+ X t

(
1+

η∆t

1+ X t

)−1−ν
]

1{|∆t | < X1−δ
t },

where η = η(X t ,∆t ) ∈ [0, 1]. Here, we have that, since |(1 + y)−1−ν
− 1| ≤ C |y| for some

C ∈ (0,∞) and any y ∈ (−1, 1),

∆t

(
1+

η∆t

1+ X t

)−1−ν

1{|∆t | < X1−δ
t } = ∆t 1{|∆t | < X1−δ

t }

+ O(|∆t |
2 X−1

t 1{|∆t | < X1−δ
t }),

as X t →∞. Hence, as X t →∞, a.s.,

(Wt+1 −Wt )1{|∆t | < X1−δ
t } = −(ν + o(1))X−1−ν

t ∆t 1{|∆t | < X1−δ
t } + S(X t ,∆t ), (4.20)

where |S(X t ,∆t )| ≤ C |∆t |
2 X−2−ν

t 1{|∆t | < X1−δ
t }. We have that

E[|S(X t ,∆t )| | Ft ] ≤ C X−2−ν
t X (1−δ)(1−β)t E[|∆t |

1+β
| Ft ] = O(X−1−β−ν−δ(1−β)

t ), (4.21)

since (2.6) holds for γ > 1 + β. Moreover, since γ > 1 + β, (4.10) implies that we can take
δ > 0 small enough so that, as X t →∞,

E[∆t 1{|∆t | < X1−δ
t } | Ft ] = E[∆t | Ft ] + o(X−βt ), a.s. (4.22)

Hence, taking expectations in (4.20), and using (4.21) and (4.22) together with the assumption
that E[∆t | Ft ] ≥ (c + o(1))X−βt , we have that, as X t →∞,

E
[
(Wt+1 −Wt )1{|∆t | < X1−δ

t } | Ft

]
≤ −(cν + o(1))X−1−β−ν

t , a.s. (4.23)

On the other hand, since Wt ∈ [0, 1] a.s., we have that

E
[
(Wt+1 −Wt )1{∆t ≤ −X1−δ

t } | Ft

]
≤ P[|∆t | ≥ X1−δ

t | Ft ] = O(Xγ (δ−1)
t ), (4.24)

by (4.1). This last bound is O(X−1−β−δ
t ), provided δ ≤ (γ − 1− β)/(1+ γ ). From (4.19) with

(4.23) and (4.24), we therefore conclude that, a.s., as X t →∞,

E[Wt+1 −Wt | Ft ] ≤ −(cν + o(1))X−1−β−ν
t + O(X−1−β−δ

t ).

Now, taking ν ∈ (0, δ) completes the proof. �
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Proof of Theorem 2.1. To complete the proof, we use a well-known martingale idea (see e.g.
[8, Theorem 2.2.2] in the countable Markov chain case). With M0 the constant in Lemma 4.7, let
M > M0. For s ∈ Z+, set Ts := min{t > s : X t ≤ M}, an (Ft )t∈Z+ -stopping time. We proceed
to show that, for some c > 0, on {Xs > 2M},

P[Ts = ∞ | Fs] > c, a.s., (4.25)

for all s ∈ Z+. By Lemma 4.7, we have that (1 + X t∧Ts )
−ν is a non-negative supermartingale

adapted to (Ft )t∈Z+ for t ≥ s. Hence, for any given s, (1 + X t∧Ts )
−ν converges a.s. as t →∞

to some limit, say L . Then, if Xs > 2M , we have

(1+ 2M)−ν ≥ (1+ Xs)
−ν
≥ E[L | Fs],

by the supermartingale property. Moreover, on {Ts <∞}, we have that (1+ X t∧Ts )
−ν converges

to (1+ XTs )
−ν , so that

E[L | Fs] ≥ E[(1+ XTs )
−ν1{Ts <∞} | Fs] ≥ (1+ M)−νP[Ts <∞ | Fs],

since XTs ≤ M a.s. Thus, we obtain

P[Ts <∞ | Fs] ≤

(
1+ 2M

1+ M

)−ν
< 1− c,

for some c > 0, and so we obtain (4.25), as required. From the assumption that lim supt→∞ X t =

∞ a.s., we have that, a.s., there exist infinitely many Z+-valued stopping times s1 < s2 < · · ·

such that Xsi > 2M . By standard arguments (such as Lévy’s extension of the Borel–Cantelli
lemmas) we can then conclude from (4.25) that X t > M for all but finitely many t ∈ Z+, a.s.
This argument holds for any M > M0, and so we have that limt→∞ X t = ∞ a.s., completing
the proof of transience. �

4.6. Proof of Theorem 3.2

Let Ξ be as defined in Section 3.2, and take Ft = σ(ξ0, ξ1, . . . , ξt ). We will consider the
process X defined by X t = ‖ξt‖. Thus we are in the final case described in Section 2.2, where
X t is a function of a Markov process. We will show that, under the conditions of Theorem 3.2,
X so defined is an instance of the supercritical Lamperti problem and satisfies the conditions of
Theorem 2.1 or 2.4 as appropriate. Write S = ∪x∈Σ {‖x‖} for the state-space of X . The next
lemma will allow us to apply our general theorems with X t = ‖ξt‖.

Lemma 4.8. Suppose that, for some β ∈ (0, 1), ρ ∈ (0,∞) and γ > 1 + β, Ξ satisfies (3.4)
and (3.5). Then, X defined by X t = ‖ξt‖ is a stochastic process on S satisfying

sup
t∈Z+

sup
x∈Σ

E[|X t+1 − X t |
γ
| ξt = x] <∞, (4.26)

lim
x→∞

(xβµ
1
(x)) = lim

x→∞
(xβµ1(x)) = ρ. (4.27)

Proof. For ease of notation, write Dt = ξt+1 − ξt . By the triangle inequality,

|X t+1 − X t | = |‖ξt + Dt‖ − ‖ξt‖| ≤ ‖Dt‖. (4.28)

Thus, with (4.28), (3.5) implies (4.26). Thus, it remains to prove (4.27). In this case, it suffices
to show that, as ‖x‖ → ∞,

‖x‖βE[X t+1 − X t | ξt = x] → ρ.



2098 M.V. Menshikov, A.R. Wade / Stochastic Processes and their Applications 120 (2010) 2078–2099

Suppose ξt = x ∈ Σ , and take δ ∈ (0, 1). Then, by (4.28),

E[(X t+1 − X t )1{‖Dt‖ > ‖x‖1−δ}] ≤ E[‖Dt‖1{‖Dt‖ > ‖x‖1−δ}] = O(‖x‖−(γ−1)(1−δ)),

by an argument similar to the proof of Lemma 4.2. Since γ > 1 + β, we can take δ > 0 small
enough so that this last bound is o(‖x‖−β). On the other hand, applying Taylor’s theorem on Rd ,
we have that, when ξt = x,

(X t+1 − X t )1{‖Dt‖ ≤ ‖x‖1−δ} = (‖x+ Dt‖ − ‖x‖)1{‖Dt‖ ≤ ‖x‖1−δ}

= ‖x+ ηDt‖
−1(η‖Dt‖

2
+ Dt · x)1{‖Dt‖ ≤ ‖x‖1−δ},

where η = η(x, Dt ) ∈ [0, 1]. Hence,

E[(X t+1 − X t )1{‖Dt‖ ≤ ‖x‖1−δ} | ξt = x]

= (1+ o(1))E[(Dt · x̂)1{‖Dt‖ ≤ ‖x‖1−δ} | ξt = x]

+ O(‖x‖−1)E[‖Dt‖
21{‖Dt‖ ≤ ‖x‖1−δ} | ξt = x], (4.29)

as ‖x‖ → ∞. Here, we have that

E[‖Dt‖
21{‖Dt‖ ≤ ‖x‖1−δ} | ξt = x] ≤ E[‖Dt‖

1+β
| ξt = x]‖x‖(1−β)(1−δ)

= O(‖x‖(1−β)(1−δ)),

since (3.5) holds for γ > 1 + β. Thus the second term on the right-hand side of (4.29) is
O(‖x‖−β−δ(1−β)) = o(‖x‖−β), since β < 1 and δ > 0. Moreover, for the first term on the
right-hand side of (4.29), we have that∣∣∣E[(Dt · x̂)1{‖Dt‖ > ‖x‖1−δ} | ξt = x]

∣∣∣ ≤ E[‖Dt‖1{‖Dt‖ > ‖x‖1−δ} | ξt = x],

which is o(‖x‖−β), as we saw above. Combining our calculations, we have shown that

E[X t+1 − X t | ξt = x] = (1+ o(1))E[(ξt+1 − ξt ) · x̂ | ξt = x] + o(‖x‖−β).

Hence, from (3.4), we obtain (4.27). �

Proof of Theorem 3.2. Lemma 4.8 shows that, under the conditions of Theorem 3.2, X defined
by X t = ‖ξt‖ satisfies all the conditions of Theorem 2.1, which yields part (i) of the theorem.
Lemma 4.8 also shows that, provided (3.5) holds for γ > 2 + 2β, all the conditions of
Theorem 2.4 are satisfied, which yields part (ii). �
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[6] E. Csáki, A. Földes, P. Révész, Transient nearest neighbour random walk and Bessel process, J. Theoret. Probab.
22 (2009) 992–1009.

[7] D. DeBlassie, R. Smits, The influence of a power law drift on the exit time of Brownian motion from a half-line,
Stochastic Process. Appl. 117 (2007) 629–654.

[8] G. Fayolle, V.A. Malyshev, M.V. Menshikov, Topics in the Constructive Theory of Countable Markov Chains,
Cambridge University Press, 1995.

[9] G. Giacomin, Random Polymer Models, Imperial College Press, London, 2007.
[10] T.E. Harris, First passage and recurrence distributions, Trans. Amer. Math. Soc. 73 (1952) 471–486.
[11] J.L. Hodges Jr., M. Rosenblatt, Recurrence-time moments in random walks, Pacific J. Math. 3 (1953) 127–136.
[12] S. Karlin, J. McGregor, Representation of a class of stochastic processes, Proc. Natl. Acad. Sci. USA 41 (1955)

387–391.
[13] S. Karlin, J. McGregor, Random walks, Illinois J. Math. 3 (1959) 66–81.
[14] J. Lamperti, Criteria for the recurrence or transience of stochastic processes I, J. Math. Anal. Appl. 1 (1960)

314–330.
[15] J. Lamperti, A new class of probability limit theorems, J. Math. Mech. 11 (1962) 749–772.
[16] J. Lamperti, Criteria for stochastic processes II: passage-time moments, J. Math. Anal. Appl. 7 (1963) 127–145.
[17] I.M. MacPhee, M.V. Menshikov, A.R. Wade, Angular asymptotics for multi-dimensional non-homogeneous random

walks with asymptotically zero drifts. Preprint arXiv:0910.1772 (2009).
[18] M.V. Menshikov, M. Vachkovskaia, A.R. Wade, Asymptotic behaviour of randomly reflecting billiards in

unbounded tubular domains, J. Stat. Phys. 132 (2008) 1097–1133.
[19] M. Menshikov, S. Volkov, Urn-related random walk with drift ρxα/tβ , Electron. J. Probab. 13 (2008) 944–960.
[20] S. Meyn, R.L. Tweedie, Markov Chains and Stochastic Stability, 2nd ed., Cambridge University Press, 2009.
[21] A.G. Pakes, Some remarks on a one-dimensional skip-free process with repulsion, J. Aust. Math. Soc. 30 (1980)

107–128.
[22] M. Rosenblatt, Functions of a Markov process that are Markovian, J. Math. Mech. 8 (1959) 585–596.
[23] M. Voit, Central limit theorems for random walks on N0 that are associated with orthogonal polynomials, J.

Multivariate Anal. 34 (1990) 290–322.
[24] M. Voit, Strong laws of large numbers for random walks associated with a class of one-dimensional convolution

structures, Monatsh. Math. 113 (1992) 59–74.
[25] D. Williams, Probability with Martingales, Cambridge University Press, 1991.

http://arxiv.org/0910.1772

	Rate of escape and central limit theorem for the supercritical Lamperti problem
	Introduction
	Model, results, and discussion
	The model and main results
	Further remarks on  μ1  and  μ 1 ; examples
	Open problems and paper outline

	Applications
	Birth-and-death chains
	Rate of escape for a non-homogeneous random walk on  Rd 

	Proofs of theorems
	Overview of the proofs
	Proof of Theorem 2.2
	Proof of Theorem 2.3
	Proof of Theorem 2.5
	Proof of Theorem 2.1
	Proof of Theorem 3.2

	Acknowledgements
	References


