Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Rate of escape and central limit theorem for the supercritical Lamperti problem

Menshikov, Mikhail V. and Wade, A.R. (2010) Rate of escape and central limit theorem for the supercritical Lamperti problem. Stochastic Processes and their Applications, 120 (10). pp. 2078-2099. ISSN 0304-4149

PDF (Rate of escape and central limit theorem for the supercritical Lamperti problem)
MenshikovWade2010.pdf - Final Published Version

Download (501kB) | Preview


The study of discrete-time stochastic processes on the half-line with mean drift at x given by μ1(x)→0 as x→∞ is known as Lamperti's problem. We give sharp almost-sure bounds for processes of this type in the case where μ1(x) is of order x−β for some β(0,1). The bounds are of order t1/(1+β), so the process is super-diffusive but sub-ballistic (has zero speed). We make minimal assumptions on the moments of the increments of the process (finiteness of (2+2β+ε)-moments for our main results, so fourth moments certainly suffice) and do not assume that the process is time-homogeneous or Markovian. In the case where xβμ1(x) has a finite positive limit, our results imply a strong law of large numbers, which strengthens and generalizes earlier results of Lamperti and Voit. We prove an accompanying central limit theorem, which appears to be new even in the case of a nearest-neighbour random walk, although our result is considerably more general. This answers a question of Lamperti. We also prove transience of the process under weaker conditions than those that we have previously seen in the literature. Most of our results also cover the case where β=0. We illustrate our results with applications to birth-and-death chains and to multi-dimensional non-homogeneous random walks.