Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Understanding enzyme action on immobilised substrates

Halling, P.J. and Ulijn, R.V. and Flitsch, S.L. (2005) Understanding enzyme action on immobilised substrates. Current Opinion in Biotechnology, 16 (4). pp. 385-392. ISSN 0958-1669

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

With increasing interest in automated synthesis and screening protocols, solid supported chemistry and biochemistry are attractive technologies. Studies with surface-immobilised substrates have been carried out to analyse enzyme accessibility, kinetics and thermodynamics. Several interesting new methods have been developed to monitor enzyme action on substrates attached to a solid phase such as polymer beads glass or gold surfaces. These include fluorescence measurements, MALDI-TOF mass spectrometry, and the use of quartz crystal microbalances to measure weight changes of immobilised molecules directly on the surface. Approaches that allow spatial resolution in single beads have also been reported. The ability of enzymes to reach the inside of beads is becoming better characterised and new supports have been developed that allow improved accessibility. The equilibrium position of reactions on the solid surface can be substantially shifted compared with reactions in solution, and this can be usefully exploited using hydrolases in reverse. Research is also starting to tackle the way in which kinetics are modified when the substrates are surface immobilised.