Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Optical Kerr-effect study of trans- and cis-1,2-dichloroethene: liquid-liquid transition or super-Arrhenius relaxation

Turton, D.A. and Wynne, K. and Martin, D.F. (2010) Optical Kerr-effect study of trans- and cis-1,2-dichloroethene: liquid-liquid transition or super-Arrhenius relaxation. Physical Chemistry Chemical Physics, 12. pp. 4191-4200. ISSN 1463-9076

[img] PDF (Strathprints24846.pdf)
Strathprints24846.pdf
Restricted to Registered users only

Download (1MB) | Request a copy from the Strathclyde author

Abstract

The evidence that a molecular liquid in its thermodynamically-stable state can undergo a liquid-liquid transition (LLT) is still uncertain. Therefore, trans-1,2-dichloroethene is of interest due to reports of a LLT above the melting point [S. Kawanishi, T. Sasuga and M. Takehisa, J. Phys. Soc. Jpn., 1982, 51, 1579-1583; S. Rzoska, J. Ziolo, A. Drozd-Rzoska, J. L. Tamarit and N. Veglio, J. Phys.: Condens. Matter, 2008, 20, 244124; K. Merkel, A. Kocot, R. Wrzalik and J. Ziolo, J. Chem. Phys., 2008, 129, 074503-074508]. Ultrafast optical Kerr-effect (OKE) spectroscopy enables accurate measurement of the low-frequency modes arising from interactions in liquids and therefore should be sensitive to the change in liquid structure inherent in such a transition. In the OKE data presented here, no sharp transitions are discernible, nor are there any in calorimetry data. However, the same data do reveal that neither trans- nor cis-1,2-dichloroethene is a simple liquid: in each case, a non-Arrhenius temperature dependence (with a Debye lineshape) is observed for the α relaxation. This dependence can be fitted by the Vogel-Fulcher-Tammann (VFT) law over the measurable temperature range suggesting that at low temperature, cooperative relaxation, due to the formation of clusters or structure, is present. Accurate analysis of the OKE spectrum in the terahertz region is generally limited by approximations inherent in the models. Here the diffusional modes are convoluted with librational modes to give a more physically meaningful approximation to the inertial response.