Picture of flying drone

Award-winning sensor signal processing research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in award-winning research into technology for detecting drones. - but also other internationally significant research from within the Department of Electronic & Electrical Engineering.

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Low-and medium-mass ion acceleration driven by petawatt laser plasma interactions

McKenna, P. and Lindau, F. and Lundh, O. and Carroll, D.C. and Clarke, R.J. and Ledingham, K.W.D. (2007) Low-and medium-mass ion acceleration driven by petawatt laser plasma interactions. Plasma Physics and Controlled Fusion, 49 (12B). B223-B231. ISSN 0741-3335

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

An experimental investigation of low- and medium-mass ion acceleration from resistively heated thin foil targets, irradiated by picosecond laser pulses at intensities up to 5 × 1020 W cm−2, is reported. It is found that the spectral distributions of ions, up to multi-MeV/nucleon energies, accelerated from the rear surface of the target are broadly consistent with previously reported measurements made at intensities up to 5 × 1019 W cm−2. Properties of the backward-directed beams of ions accelerated from the target front surface are also measured, and it is found that, compared with the rear surface, higher ion numbers and charges, and similar ion energies are produced. Additionally, the scaling of the maximum ion energy as a function of ion charge and laser intensity are measured and compared with the predictions of a numerical model.