
 
 
 
Daly, J. and Brooks, A. and Miller, J. and Roper, M. and Wood, M. (1996) 
An empirical study evaluating depth of inheritance on the maintainability 
of object-oriented software. In: Empirical Studies of Programmers: 
Sixth Workshop. Intellect, pp. 39-58. ISBN 9781567502626 
 
 
 
http://eprints.cdlr.strath.ac.uk/2676/
 
 
 
Strathprints is designed to allow users to access the research 
output of the University of Strathclyde. Copyright © and Moral 
Rights for the papers on this site are retained by the individual 
authors and/or other copyright owners. Users may download 
and/or print one copy of any article(s) in Strathprints to facilitate 
their private study or for non-commercial research. You may not 
engage in further distribution of the material or use it for any 
profitmaking activities or any commercial gain. You may freely 
distribute the url (http://eprints.cdlr.strath.ac.uk) of the Strathprints 
website. 
 
Any correspondence concerning this service should be sent to The 
Strathprints Administrator: eprints@cis.strath.ac.uk 
 

http://eprints.cdlr.strath.ac.uk/2815/


An Empirical Study Evaluating Depth of Inheritance on the

Maintainability of Object-Oriented Software

John Daly�, Andrew Brooks, James Miller, Marc Roper and Murray Wood

Dept. Computer Science, University of Strathclyde,

Livingstone Tower, Richmond Street, Glasgow G1 1XH, Scotland

(email: efocs@cs.strath.ac.uk)

ISERN-96-11

Abstract

This empirical research was undertaken as part of a multi-method programme of research to

investigate unsupported claims made of object-oriented technology. A series of subject-based

laboratory experiments, including an internal replication, tested the e�ect of inheritance

depth on the maintainability of object-oriented software. Subjects were timed performing

identical maintenance tasks on object-oriented software with a hierarchy of three levels of

inheritance depth and equivalent object-based software with no inheritance. This was then

replicated with more experienced subjects. In a second experiment of similar design, sub-

jects were timed performing identical maintenance tasks on object-oriented software with a

hierarchy of �ve levels of inheritance depth and the equivalent object-based software.

The collected data showed that subjects maintaining object-oriented software with three

levels of inheritance depth performed the maintenance tasks signi�cantly quicker than those

maintaining equivalent object-based software with no inheritance. In contrast, subjects

maintaining the object-oriented software with �ve levels of inheritance depth took longer,

on average, than the subjects maintaining the equivalent object-based software (although

statistical signi�cance was not obtained). Subjects' source code solutions and debrie�ng

questionnaires provided some evidence suggesting subjects began to experience di�culties

with the deeper inheritance hierarchy

It is not at all obvious that object-oriented software is going to be more maintainable in

the long run. These �ndings are su�ciently important that attempts to verify the results

should be made by independent researchers.

�Daly is now with the Fraunhofer Institut (IESE), Kaiserslautern, Germany

1



1 Introduction

Object-oriented technology has become increasingly popular as a result of anecdotal evidence

and expert intuition despite various warnings about relying only on such evidence [Bur95],

[HHL90]. Evidence must be derived from a variety of empirical techniques, the data collected

being used to substantiate �ndings, identify discrepancies, and act as a platform for further

investigation. Unfortunately not enough of this research is being performed | for object-

oriented technology this means little empirical evidence exists to support many of the claims

made of it. For example, Jones [Jon94] details a visible lack of empirical data to support the

assertions of substantial gains in software productivity and quality, reduction in defect potential

(the probable number of defects from all causes that will be encountered during development

and production) and improving defect removal e�ciency (the percentage of defects removed by

any operation, e.g., code inspection), and reuse of software components. Henry et al. [HHL90]

provide a list of references which they state have made claims having qualitative appeal, but

which have little supporting quantitative data.

In contrast, related research has reported that aggregation, dynamic binding, inheritance,

and polymorphism can introduce di�culties for programmers attempting to understand, main-

tain, and test object-oriented software; see [CvM93], [Dvo94], [JKZ94], [KGH+94], [LMR92],

[WH92], [WMH93]. For example, Wilde and Huitt [WH92] argue that the mechanisms of inher-

itance, polymorphism, and dynamic binding are responsible for the creation of delocalised plans

| pieces of code that are conceptually related but are physically located in non-contiguous parts

of the program [SPL+88]. As a consequence, although it can be relatively easy to understand

most of the data structures and member functions individually, understanding their combined

functionality can be extremely di�cult [KGH+94], [LMR92]. In addition, the use of inheritance

and polymorphism can create a large amount of dependencies that need to be considered within

an object-oriented program [KGH+94], [WH92]. The number of dependencies that must be

considered is far greater than in a conventional system and, as a consequence, a maintainer can

have great di�culty identifying the impact of their changes [KGH+94].

So clearly the alleged advantages and disadvantages of the technology require substantial

empirical investigation. This realisation led to a multi-method programme of research [Dal96],

[DBM+95]. The programme of research began with an exploratory investigation where struc-

tured interviews were conducted, with both academics and industrialists, on their opinions of the

merits and failings of the object-oriented approach. The �ndings of this primary investigation

were used to design and implement a questionnaire on key aspects of object-oriented systems

| the intention was to con�rm (or otherwise) the �ndings of the �rst phase across a much

larger and wider practitioner group. Finally, a series of subject-based laboratory experiments

2



were conducted, including an internal replication, which tested one of the important and most

interesting outcomes of the questionnaire survey in a more controlled setting.

This paper details the design of these experiments and describes the procedures, subjects,

tasks, and materials. Statistical tests are applied to the time data collected and these are

interpreted in conjunction with an inductive analysis to explore possible explanations of the

data. Finally, threats to internal and external validity are discussed.

The collected data shows that subjects maintaining object-oriented software with three levels

of inheritance depth performed the maintenance tasks signi�cantly quicker than those maintain-

ing equivalent object-based software with no inheritance. In contrast, subjects maintaining the

object-oriented software with �ve levels of inheritance depth took longer, on average, than the

subjects maintaining object-based software (although statistical signi�cance was not obtained).

Subjects' source code solutions, and debrie�ng questionnaires provide some evidence suggesting

subjects began to experience di�culties with the deeper inheritance hierarchy.

2 Experimental justi�cation

In the structured interview phase of the multi-method approach there was consensus amongst

object-oriented developers that inheritance depth a�ects a programmer's ability to understand

object-oriented software [DWB+95]. In the questionnaire phase, the majority of object-oriented

practitioners (55% of the 273 responses) agreed that inheritance depth is a factor when attempt-

ing to understand object-oriented software [DMB+95]. Of these, the largest proportion (57%)

indicated that between four and six levels of inheritance depth is where di�culties begin. Since

it is well documented that program understanding is a major factor in providing e�ective soft-

ware maintenance and that software maintenance accounts for a large part of the total software

development budget, this is a �nding that could be of major importance. To investigate the

phenomenon in a controlled manner, a series of subject-based laboratory experiments, including

a replication, were conducted in an attempt to evaluate the e�ect of inheritance depth on the

maintainability of object-oriented software.

Students and recent graduates were used as subjects. The use of student subjects has

been justi�ed by Brooks [Bro80] and adopted by researchers in previous empirical studies, e.g.,

[LHKS92], [PVB95]. Drawing generalisations from their performance, however, is something that

should be carefully considered. For example, Curtis has voiced concern about the use of novice

programmers as subjects [Cur86]. On the other hand, the series of experiments was conducted

within a multi-method programme of research and it was hoped their results would con�rm

the �ndings of the structured interview and questionnaire phases. If con�rmatory power was

achieved, any conclusions drawn would be more reliable and generalisable. Subsequent studies

3



should still seek to scale up the �ndings to the maintenance of larger software systems with

professional programmers.

3 Experimental design

The experiments sought to determine if inheritance depth has an e�ect on the maintainability

of object-oriented software. Throughout this article the following de�nitions apply:

Inheritance depth: the level of a class in the hierarchy where the base class is level 1. Con-

sequently, any class is at level n if it has n � 1 superclasses. The level of the deepest leaf

class is quoted as the depth of the hierarchy.

Maintenance: modi�cation of a software product after delivery to correct faults, to improve

performance or other attributes, or adapt the product to a changed environment [Sch87].

Maintainability: the ease with which a software system can be corrected when errors or de�-

ciencies occur, and can be expanded or contracted to satisfy new requirements [Sch87].

Maintainability can be measured in a number of ways, e.g., by using complexity metrics

or even subjective evaluations by experts. For this study, in operational terms, a di�erence

in maintainability is to be measured by di�erences in the times it takes subjects to perform

maintenance tasks. If a software system is less or more easy to understand and modify than

another, then this di�erence is expected to manifest itself as di�erences in performance times.

In a controlled experiment on the impact of software structure on maintainability, Rombach

[Rom87] reports correlations between complexity measures and sta�-hour e�ort. The times

reported here reect a snap-shot view of maintainability, and relative maintainability could

change as the maintenance process evolves.

Regardless of program versions in the �rst experiment and its internal replication, the main-

tenance task described to subjects was the same. Regarding program versions, e�ort was made to

ensure the maintenance tasks were su�ciently similar to allow meaningful comparisons. (Table

3 suggests there were no task e�ects arising from the two programs.) In the second experiment,

regardless of program versions, the maintenance task described to subjects was the same.

The programs used are regarded as good representatives of the solution spaces, i.e., they are

not contrived and are assumed to resemble the solutions most programmers would adopt.

3.1 Design of �rst experiment

Standard signi�cance testing was adopted and for the �rst experiment the stated null hypothesis

was:

4



H0�exp1 | The use of a hierarchy of 3 levels of inheritance depth does not a�ect the

maintainability of object-oriented programs,

to be rejected in favour of the alternative hypothesis

H1�exp1 | The use of a hierarchy of 3 levels of inheritance depth does a�ect the

maintainability of object-oriented programs.

Note that there is no direction speci�ed in the alternative hypothesis | it was not predicted

whether the e�ect on maintainability would be positive or negative because: (i) of the varying

opinions expressed in the maintenance literature about object-oriented software and (ii) although

the depth being empirically investigated borders the range indicated most frequently by practi-

tioners in the questionnaire phase as where di�culties begin to occur, it is not completely within

that range. A depth of three was chosen to provide an intermediate reference point between the

at code and the second experiment which provides a depth within the range most frequently

indicated.

To test the hypothesis a within subjects randomised block design was used | subjects were

matched on object-oriented knowledge and were then randomly allocated into one of two groups,

A or B. Group A performed a maintenance task on a program with an inheritance hierarchy

while group B performed the identical task on an equivalent version of the program without an

inheritance hierarchy (referred to from now on as the `at' version). To counter-balance this,

the reverse was then carried out: group B performed a similar maintenance task on a second,

similar program with an inheritance hierarchy while group A maintained the equivalent at

version (Section 3.1.2 explains this design in full). Counter-balancing the groups in this manner

should have eliminated any task direction bias and subsequently any ability e�ect, but there

is always the possibility that counter-balancing can introduce a learning e�ect. The data is

examined for this e�ect (see Section 4.4).

This traditional experimental design provided a single independent and a single dependent

variable. The program version (inheritance or at) being maintained was the independent

variable and the dependent variable was the time taken to complete the maintenance task;

the most frequent measure of programmers' e�orts on software maintenance is the time taken

[Fos91]. Data gathering (discussed in Section 3.1.5) was not limited to this dependent variable

to allow an inductive analysis to be performed (discussed in Section 4.4).

With the anticipation of around 30 subjects completing in each group, t-test power curves

[Lip90] for a two-tailed signi�cance level of 0:05 indicated that the experimental design had a 0:5

probability of detecting a medium-sized e�ect (where the di�erence in means is 0:5 of a standard

deviation) and a 0:86 probability of detecting a large sized e�ect (where the di�erence in means

5



is 0:8 of a standard deviation). With pairing, the anticipation was that these power levels would

be improved upon.

3.1.1 Procedure

The �rst experiment was performed through a taught postgraduate conversion course in in-

formation technology. All of the students (see Section 3.1.2) enrolled in an object-oriented

programming class using C++ which was intensively taught over a four week period with ap-

proximately nine hours of supervised practical time every week for the �rst three weeks and �ve

hours in the last week. Students were taught the concepts of object encapsulation, inheritance,

message passing, and polymorphism, a working knowledge of which was required to complete the

maintenance tasks. Practical exercises were based on these concepts, with students designing

and implementing their own classes and inheritance relations and integrating these with existing

code.

Students consented to their practical work being used for research purposes and the practical

tests/experiments, constituting 60% of the �nal class mark, were conducted during the �nal week

of the class. For each practical test, every student was given a sheet detailing the experimental

instructions, a packet containing the maintenance task, and a second packet containing a listing

of the source code. The experimental instructions were also explained verbally at the beginning.

(The only other information given was that di�erent versions of the program existed, stated to

reduce students concern about their relative performance during an individual test.)

The procedure followed for each of the two practical tests was:

1. Subjects were allowed �ve minutes to read the instructions and ask questions. When this

time had passed and all subjects indicated they were happy with the instructions, they

were instructed to open packet 1.

2. Packet 1 contained the maintenance task the subjects were to attempt. Subjects were

given a further ten minutes to read the task and ask questions. Again, when this time had

passed and all subjects had indicated they were happy with the maintenance task, they

were instructed to open packet 2.

3. Packet 2 contained the experimental code listing. Once packet 2 was opened, data record-

ing began and each subject had up to 1 hour 45 minutes to complete the maintenance task

and compile and execute the code until the program output matched the required output

provided. When subjects were of the opinion that they had completed the task a monitor

checked their work. If the output was correct, data recording was terminated; if not, the

subject was asked to continue with the modi�cation.

6



Group Experiment 1a Experiment 1b

A Program 1 inheritance Equivalent at version

version of program 2

B Equivalent at version Program 2 inheritance

of program 1 version

Table 1: Group allocations to tasks in the �rst experiment

After completing the maintenance task, subjects were asked to complete a debrie�ng ques-

tionnaire before leaving. The questionnaire elicited personal details, programming experience,

and impressions of the maintenance task just attempted, e.g., the overall task di�culty, what

approach to the modi�cation was taken, and what aspect caused the most di�culty.

3.1.2 Subjects

Thirty one students enrolled in the object-oriented programming course, all of whom had com-

pleted a ten week class in imperative programming using Turbo Pascal. Each subject sat two

multiple choice tests (counting for the other 40% of the class mark) which assessed their object-

oriented programming knowledge gained from the class. The subjects were distributed into two

groups (16 subjects in group A and 15 subjects in group B) by matching pairs of subjects on

the results of these two multiple choice tests and then randomly assigning one to each group:

this pre-screening matching was performed to reduce subject variability across the groups.

The two groups were counter-balanced across the program versions with or without inheri-

tance as illustrated in Table 3.1.2. Allocation in this manner ensured that all subjects performed

a maintenance task to both a at program version and an inheritance program version. Sub-

jects who did not complete the task could not be included in the statistical analysis because

the nature of the study prevented subjects from continuing after the allocated time period. The

e�orts made by these subjects, however, have been taken into account.

3.1.3 Maintenance tasks

There were two programs to be modi�ed; each was designed in an object-oriented fashion and

then implemented in C++. Both programs were simple database systems which allowed records

to be created, displayed, modi�ed, and deleted. The �rst system stored information on two

types of university sta� and students via the classes Lecturer, Secretary, and Student. Figure 1

displays the inheritance hierarchy for this database system. The classes Sta� and Student inherit

from the Univ Community class, Lecturer and Secretary inherit from Sta�, and Professor (to

be added) inherits from Lecturer. The classes Univ Community and Sta� are abstract classes:

there are no instances of these classes, they merely have the abstract features common to the

7



print
department

firstName
lastName

Univ_Community

print
Staff

staffId

hourlyWage

print

annualSalary

print

Lecturer

Student

researchGrant

Professor

Secretary

print

regNumber

setResearchGrant

print

Figure 1: Inheritance hierarchy of database system for university sta� and students.

specialisation classes. Instances of Lecturer, Secretary and Professor can receive the message

sta�Id, and the member function in the super-class Sta� will be executed. Member functions in

any of the subclasses can manipulate the instance variables �rstName, lastName, and department

by means of the appropriate member functions in the superclass. Finally, each class overloads the

member function print to implement its own version. The second system stored information on

three types of written work via classes Book, Conference, and Thesis. The inheritance hierarchy

for this system was similar to that of the university database, as were the number of �elds per

class.

Two versions of each system were used, a at and an inheritance program version. The

equivalent at program versions were created by removing all the inheritance links between the

classes in the hierarchy and adding the data members and individual member functions to each

class which had previously inherited them. Any abstract classes were then deleted, leaving a

`attened' but equivalent version of the inheritance hierarchy. The at program versions were

each about 390 lines of code (simple line count, including approximately 25 comment lines |

used to identify C++ constructs not class relationships, e.g., `lecturer constructor', `assign initial

values'). The inheritance program versions were each about 360 lines of code (approximately 35

comment lines). The inheritance depth for each system was three.

To test the hypothesis about the maintainability of object-oriented software, maintenance

8



tasks were devised which introduced new requirements (in this case, increasing the amount of

information the database could store). The subjects' task was to add a single class to their

system. A Professor class had to be added to the university system, and a Phd Thesis class to

the library system. The Professor class was to consist of seven �elds, some of which are shown

in Figure 1, and was intended to be specialised from class Lecturer. The Phd Thesis class was

also to consist of seven di�erent �elds and was intended to be specialised from class Thesis.

These two tasks were designed to be similar. In line with common programming practices each

class was expected to have: (i) its member variables declared as private, (ii) a constructor, (iii)

a destructor, and (iv) public member functions (although the required output could be obtained

without all of these practices being adhered to). Subjects had then to create an instance of

their new class with initial and default values, modify some of these values, and then display

the object. Regardless of the program version (inheritance or at) the maintenance task was

the same.

3.1.4 Materials

Each subject was given the following experimental materials:

� a workstation (such that subjects in the same group were not sitting next to each other),

� full experimental and maintenance task instructions,

� complete source code listing of the program (paper-based and on-line), and

� test-data to determine successful task completion.

The environment used was Sun-Sparc workstations, Sun C++ compiler, and the GNU Emacs ed-

itor. The experiment was run under laboratory conditions: there was no form of communication

between the subjects. They were, however, allowed access to their class textbook [Ski92].

3.1.5 Data collection

The data was automatically collected by a highly controlled environment designed speci�cally for

this study. Each subject was required to start a shell script which provided a workstation prompt

with their login name and the time. This script was kept running throughout the experiment

and it recorded the process the subject adopted towards the modi�cation; this allowed the reader

of the typescript to decipher, for example, how long was spent on a particular problem.

Another shell script was introduced which, while compiling the subject's �les to generate the

executable, automatically copied each �le with a time stamp to a backup directory. This meant

9



the number of compilations could be calculated and also allowed examination of each subject's

solution as it was written and compiled from one stage to the next.

In summary, the data collected from conducting each experiment for any given subject was:

(i) the time to complete the task, (ii) automatic �le backups, (iii) a script of the subject's

experimental procedure, (iv) the �nal version of the subject's solution, and (v) answers to the

debrie�ng questionnaire.

3.1.6 Pilot study

A pilot study, using four academic sta�, was conducted to: (i) �nd introduced assumptions in

the experimental materials, (ii) �nd mistakes in the experimental procedure, (iii) test that the

experimental instructions were clear, (iv) check that the tasks were of reasonable complexity,

but that they could be completed well within the allotted time, (v) ensure performance of

the automated data collection techniques, and (vi) attempt to identify any other unforeseen

circumstances.

No signi�cant issues were encountered during the pilot study, but subjects did require clari-

�cation on several points in the instructions, e.g., two subjects mentioned that the description

of the required program output was not speci�c enough. The instructions were subsequently

amended to make them clearer.

3.2 Design of internal replication

An internal replication was conducted to con�rm the direction of the �ndings of the �rst ex-

periment. It was decided to perform the replication with more experienced programmers | it

was planned and executed relatively soon after the �rst experiment and before its results were

known. With the anticipation of around 15 subjects completing in each group, t-test power

curves [Lip90] for a one-tailed signi�cance level of 0.05 indicated that the experimental design

had a 0:4 probability of detecting a medium-sized e�ect and a 0:7 probability of detecting a large-

sized e�ect. Twenty nine subjects, a mixture of BSc. Computer Science students going into �nal

(fourth) year and new graduates, volunteered to participate. All subjects were expected to be

well versed in C programming. The subjects participated in a week long intensive C++ course,

during which the internal replication using the library database system was performed. One half

of the subjects maintained the at version; the other half the inheritance version. No internal

replication was performed using the university database system because the subjects were to

participate in the second experiment which involved using a deeper inheritance hierarchy (see

Section 3.3).

Subjects were randomly allocated to two groups in the same manner as that detailed in

10



Group Internal Replication Second Experiment

A Inheritance version Equivalent at version

of 5 level hierarchy

B Equivalent at version Inheritance version

with 5 levels

Table 2: Group allocations to tasks for the replication and second experiment

Section 3.1.2, but were blocked across their average Computer Science exam marks. The groups

were counter-balanced across program versions with or without inheritance as illustrated in Table

3.2. Allocation in this manner again ensured that all subjects performed a maintenance task to

both a at program version and an inheritance program version, i.e., those that performed with

the at program version in the replication were given the inheritance program version in the

second experiment and vice versa. The procedures, materials, and environment were the same

as they were for the �rst experiment (see Section 3.1).

For the internal replication the null hypothesis was stated:

H0�rep | The use of a hierarchy of 3 levels of inheritance depth does not a�ect the

maintainability of object-oriented programs,

to be rejected in favour of the alternative hypothesis

H1�rep | The results of the internal replication will be in the same direction as the

�rst experiment.

The direction speci�ed in the hypothesis indicates the results of the replication were expected

to be similar to the results of the �rst experiment.

3.3 Design of second experiment

Thirty one subjects participated in the second experiment which tested the e�ect of a deeper

inheritance hierarchy on the maintainability of object-oriented software. (These were the same

subjects from the replication plus two students who missed it due to prior commitments.) The

procedures, materials, and environment used for the �rst experiment were kept the same. With

the anticipation of around 15 subjects completing in each group, statistical power estimates were

similar to that for the internal replication.

The system used for this experiment was a larger version of the university database system

from the �rst experiment (see Figure 1). The inheritance hierarchy was extended to include

more members of the university community: undergraduate student, postgraduate student,

technician, senior technician, and supervisor classes were incorporated into the software. In

11



department

taxableSalary

print

hourlyWage

print

annualSalary

print

setResearchGrant

print

taxableSalary

staffId

print

print

print

regNumber

print

taxableSalary

taxableSalary

print

print

taxableSalary

setOffice

Student

lastName
firstName

Univ_Community

Staff

Pg_Student Ug_StudentLecturerSecretary Technician

Professor Senior_Technician

office

Director

Supervisor

Figure 2: Hierarchy with 5 levels of inheritance for second experiment.

addition, member functions were introduced so that wages and salaries could be calculated for

the university employees. Figure 2 displays the inheritance hierarchy for this system. Again,

two versions of the system were constructed: a at program version and an inheritance program

version. The inheritance depth for this system was 5. The inheritance program version was

approximately 800 lines of code (approximately 90 comment lines), distributed in 12 classes

(again, each class was distributed in a header and implementation �le) and a main �le. The at

program version, constructed in the same manner detailed in Section 3.1.3, had 3 fewer classes

(the abstract classes which were deleted), but was around 300 lines longer (approximately 80

comment lines).

The maintenance task for this more complex system was again devised to meet new require-

ments. The task involved adding a new class, Director, which was expected to be specialised

12



from class Supervisor (as detailed in Figure 2). Once more the task required member functions

to create, modify, display, and delete instances of the class. In addition, a member function had

to be written to calculate the taxable salary for Director. Each subject then had to create an

instance of their new class and send it messages to invoke actions to meet the required program

output. For the second experiment the null hypothesis was stated:

H0�exp2 | The use of a hierarchy of 5 levels of inheritance depth does not a�ect the

maintainability of object-oriented programs,

to be rejected in favour of the alternative hypothesis

H1�exp2 | The use of a hierarchy of 5 levels of inheritance depth does a�ect the

maintainability of object-oriented programs - subjects maintaining the inheritance

program version will take longer than those subjects maintaining the at program

version.

For this hypothesis a direction was provided because the depth being empirically investigated

is within the range indicated most frequently by practitioners where di�culties begin to occur

[DMB+95].

4 Experimental results

This section details subjects' mean completion times for the maintenance tasks and provides an

interpretation of the discovered timing trends.

4.1 First experiment

The timing data collected for the �rst experiment is presented in summarised form in Table 3.

Column two gives the mean time (Xtime), column three gives the standard deviation (Stime),

columns four and �ve give the minimum and maximum times, column six gives the number

of observed times (N), and column seven gives the number of incomplete times (Inc.). Rows

one and two present the summary for the �rst run using the university database system. Rows

three and four present the summary for the second run using the library database system. Note

that the average times for the inheritance and at program versions are very similar for the two

software systems which suggests that there were no task e�ects. (The di�erence in average times

for at versus inheritance for each software system are in the same direction, although they are

not statistically signi�cant). In addition, rows �ve and six present the grouped mean at and

inheritance times for the two runs. Examination of these times shows a mean di�erence of 11.4

minutes between the total inheritance and at times.

13



Xtime Stime Min. Max. N Inc.

Program 1 Flat 53.1 23.1 26 98 10 5

Program 1 Inheritance 44.1 20.6 18 92 14 2

Program 2 Flat 56.8 23.9 31 100 13 3

Program 2 Inheritance 43.5 20.4 25 102 13 2

Grouped Flat 55.2 23.1 26 100 23 8

Grouped Inheritance 43.8 20.1 18 102 27 4

Table 3: Statistical summary of the �rst experiment times (minutes)

Statistical tests were then applied. Formal skewness and kurtosis tests were performed and

found several of the data distributions to be non-normal at the 95% con�dence interval (con-

�dence intervals are provided in [BCM94]). Consequently, to be conservative, non-parametric

statistical tests were applied (although for each non-parametric test a similar result was obtained

by an alternative parametric tests). A Wilcoxon signed ranks (related) test which takes account

of the di�erence (positive or negative) between paired values, i.e., the performance di�erence

between a subject's time to complete the inheritance program version and the at program ver-

sion, was calculated. The statistical test, based upon the 20 subjects who completed both the

at and inheritance program versions, produced a signi�cant result with p = 0:05 (two-tailed,

W = 46:5; N = 19; z = �1:95): 13 subjects performed better on the inheritance than the at,

6 did the opposite, and 1 achieved the same time for both versions (and so was discounted in

the test calculation). Thus we reject the null hypothesis H0�exp1 in favour of the alternative

hypothesis H1�exp1.

It was of some concern that 11 subjects failed to complete at least one of the tasks within

the allotted time. It is important to note the signi�cant statistical result was based on paired

observations and thus did not include any of these subjects. Of these 11 subjects, one failed to

complete both program versions, 7 subjects completed an inheritance but not a at version, and

3 completed a at but not an inheritance program version. On studying the questionnaires and

subjects' source code it was found that the most common reason for incompletion was that 6 of

the those working with a at version attempted to develop a solution using inheritance. Most

students who successfully completed the task when working with the at version appeared to

use an existing class as a template. Those who attempted to introduce inheritance into the at

version had no such template within their existing code.

Combining those who did complete with those who failed to complete within time provides

a performance ratio of 20:9, i.e., approximately 2 out of 3 subjects performed better when

maintaining object-oriented software with inheritance.

14



Xtime Stime Min. Max. N Inc.

Replication Flat 46.1 20.0 22 97 14 0

Replication Inheritance 35.2 17.0 14 77 13 2

Table 4: Statistical summary of the replication times (minutes)

4.2 Internal replication

The timing data collected is summarised in Table 4 in the same format used in Table 3. The

results were in the same direction as the �rst experiment with a di�erence in time (10.9 minutes)

between the two groups; this is similar to that of the �rst experiment. Note that the average

times for the replication groups are faster than the �rst experiment by 9.1 minutes for the

at program version and 8.6 minutes for the inheritance program version. This improvement

in performance is interpreted as being due to the replication subjects' greater programming

experience.

A Wilcoxon rank sum (unrelated) test was calculated for these times because, unlike the

�rst experiment, there was no paired value available for comparison. The statistical result was

p = 0:07 (one-tailed, W = 151:0; n1 = 14; n2 = 13; z = �1:51), but is arguably close enough to

the 0.05 level to provide con�rmatory power for the �rst experiment result. We reject the null

hypothesis H0�rep in favour of the alternative hypothesis H1�rep.

In this experiment there were 2 incompletions. Questionnaire data suggests that these 2

subjects su�ered signi�cant problems with C++ inheritance syntax.

4.3 Second experiment

Table 5 presents the collected timing data in the usual summarised form. Note that the direction

of the mean times matches the predicted direction of the hypothesis. Cross checking the mean

times from the replication and this experiment (see Tables 4 and 5) shows that while the mean

time for the at group has increased only marginally (approximately 3.5 minutes), the mean time

for the inheritance group has increased substantially (on average approximately 19.8 minutes

longer per subject). Possible reasons for this large turn around are discussed below.

A Wilcoxon rank sum test (unrelated), however, did not show signi�cance between these

mean times p = 0:27 (one tailed, W = 217:5; n1 = 15; n2 = 15; z = �0:62), and hence the

Xtime Stime Min. Max. N Inc.

Flat 49.6 21.3 15 92 15 1

Deeper inheritance 55.0 23.9 33 115 15 0

Table 5: Statistical summary of the second experiment times (minutes)

15



null hypothesis, H0�exp2, cannot be rejected. When the null hypothesis is not rejected, it is

important to consider power levels. The design had a good chance, 0:7, of detecting a large

e�ect but only 0:4 of a probability of detecting a medium-sized e�ect. These power estimates

are further weakened by the need that arose to use non-parametric statistics. So a small to

medium-sized e�ect may well exist: the second experiment simply did not have the necessary

statistical power to draw conclusions one way or the other regarding the existence of a small to

medium-sized e�ect. On the other hand, the direction of the mean times has reversed for this

experiment. This is an important �nding and worth exploring.

There was one incompletion in this experiment. The collected source code shows that this

subject attempted to reconstruct a complete inheritance hierarchy from his at code, so this

incompletion does not bias the results.

4.4 Inductive analysis and interpretation

Figure 3 displays the spread of the collected times through the use of boxplots (see [CCKT83]

for a full description). The �rst two boxplots represent the times of the �rst experiment for

the inheritance group (N = 27) and the at group (N = 23); boxplots three and four represent

the inheritance group (N = 13) and the at group (N = 14) times for the replication; �nally,

boxplots �ve and six represent the inheritance group (N = 15) and the at group (N = 15)

times for the second experiment. The boxplots show similarity between the spread of the data

in the �rst experiment and the replication and also show the di�erence in performance between

at and inheritance groups as the depth of the hierarchy is increased. Figure 4 demonstrates

more clearly trends in performance.

Of immediate interest is that subjects' relative performance deteriorated on the inheritance

program version with a deeper hierarchy.

So what possible interpretations can be placed on the data other than the hypothesis-related

interpretation that working with a deeper hierarchy does a�ect the maintainability of object-

oriented programs.

We discount program size as a predictor of performance. Despite a near trebling in size of

the at program versions between the internal replication and the second experiment, at times

were not worse on average on the second experiment. Subjects were not required to understand

or search through every line of code; rather they were required to decide which class to specialise

from or use as a copy template and they needed only to understand the code related to this

selection.

In experiment 1 and its internal replication, it has to be acknowledged that little thought was

required to decide which class to specialise from (the superclass) or to use as a copy template. In

16



FlatInheritanceFlatInheritanceFlatInheritance

T
im

e 
(m

in
ut

es
)

120

90

60

30

0

Figure 3: Boxplots of completion times for the �rst experiment (left), the internal replication

(centre), and the second experiment using a deeper inheritance hierarchy (right)

the second experiment, however, the at program version had 9 classes to consider, a doubling

from the �rst experiment, and the inheritance program version had 12 classes to consider, again

a doubling from the �rst experiment. So subjects were initially faced with a search problem

which can have been solved in either a satisfying or optimising way. This search problem was

exacerbated by the fact that subjects were not provided with a conceptual model of the domain

nor supplied with a strategy on which to base a selection of superclass or copy template.

So a possible interpretation is that experiment 1 and its internal replication simply revealed

the modi�ability advantage of inheritance which was then cancelled out in the second exper-

iment by the more demanding search problem generated through a greater number of classes

interconnected through the inheritance mechanisms. So it need not be depth per se that would

cause a performance deterioration: a shallow but broad inheritance hierarchy could just as easily

result in a demanding search problem.

Subjects' questionnaire responses provide evidence relating to this interpretation. Table 6

indicates the number of comments or indications received under several categories for the at

and inheritance program groups. These categories are:

1. Problems choosing superclass or class to use as copy template

2. Problems tracing in the inheritance hierarchy

3. Problems with virtual functions

4. Problems with lack of provided conceptual model

17



First Experiment Second ExperimentReplication

20

30

40

50

60

0

T
im

e 
(m

in
s.

)

Inheritance

Flat

Figure 4: Average completion times for the �rst experiment, the internal replication, and the

second experiment using a deeper inheritance hierarchy

5. Adopted an optimising selection strategy of `most in common'

6. Despite indicating `most in common', chose a less than optimal class

7. Adopted a satisfying strategy of `a good basis'

8. Derivation class selection time less than 5 minutes

9. Derivation class selection time between 5-10 minutes

This approach, of drawing up tables of data in order to detect common patterns of behaviour

with a view to understanding underlying processes, is called by us an inductive analysis approach

(though it may be called a qualitative analysis by others). The data in the tables may be drawn

from questionnaire data or any other measurement taken: within this paradigm it is important

to give due attention to the sorts of additional data that should be gathered over and above

the data to be used in formal statistical testing. Patterns may be detected directly from any

table drawn up or data-mining tools may be applied to the table. The emphasis of the paradigm

is on explaining what took place: this provides a check on operational de�nitions explicitly or

implicitly bound up in any null hypotheses.

Note that not every subject responded to every question on the questionnaires and that

some subjects are recorded more than once in Table 6 (but not more than once per category).

In the �rst 4 categories of the table, 2 inheritance subjects are recorded under (1) and (4). Also

note that our estimate of inter-rater reliability would suggest that an odd comment could be

classi�ed under a di�erent category, e.g., a comment about virtual functions could be categorised

18



as a problem with tracing and a problem with tracing could be categorised as a problem with

choosing superclass.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

at 1 0 1 1 6 0 1 4 1

inheritance 4 5 4 6 7 3 1 1 7

Table 6: Frequency of comments and other indicators from questionnaires

Assuming the responses are representative, Table 6 suggests that most subjects adopted an

optimising selection strategy but that it took the inheritance program group typically at least

another 5 minutes to make the selection. Moreover, 3 subjects from the inheritance program

group settled on the wrong class despite claiming to have used an optimising strategy and 5

subjects from the inheritance program group essentially invented conceptual models of the do-

main that meant they chose not to use the superclass with most in common. In contrast to

the �rst experiment and its internal replication where there was considerable (but not complete)

agreement on choice of superclass, in the second experiment, inheritance program group subjects

can be categorised into three groups: subjects inheriting from class Lecturer (2 subjects), sub-

jects inheriting from class Sta� (9 subjects), and subjects inheriting from the `most in common'

class Supervisor (4 subjects). So there is a reasonably clear indication of how more demanding

the search problem was for the inheritance program group. We believe our data also supports

Dvorak's ideas on conceptual entropy [Dvo94] : all systems that are frequently changed charac-

teristically tend towards disorder, a term recognised as entropy. In object-oriented systems

\conceptual entropy is manifested by increasing conceptual inconsistency as we travel

down the hierarchy. That is, the deeper the level of the hierarchy, the greater the

probability that a subclass will not consistently extend and/or specialise the concept

of its superclass." [Dvo94].

Dvorak identi�ed this concept through an experiment where subjects were to construct a class

hierarchy from class speci�cations: the deeper the hierarchy got the less agreement there was

between subjects about a class's placement in the hierarchy. Essentially, a similar e�ect has

been found here.

But this search problem alone is not enough to explain away all the worsening in performances

for the inheritance program group.

Table 6 indicates that most subjects in the inheritance program group reported that they

su�ered from problems due to tracing or virtual functions. (The data for categories (2) and

(3) are for separate subjects.) These problems probably go some way toward explaining the

19



rest of the worsening in performances for the inheritance program group. As noted earlier,

one di�culty that a�ects program understanding, and hence maintenance, is the presence of

delocalised plans, where pieces of code that are conceptually related are physically located in

non-contiguous parts of the program. According to Wilde et al., the mechanism of inheritance

creates further opportunities for delocalisation [WMH93]. One such related di�culty is that

understanding a single line of code may require tracing a line of method invocations through

an inheritance hierarchy. In a shallow hierarchy this may not represent a large overhead, but

as the hierarchy becomes deeper the overhead is likely to increase. In the case of a maintainer

who wants to view the actual implementation of a method, tracing the line of invocations to its

source must be conducted. Such tracing may have a�ected some subjects' maintenance times.

Note that no subject from the �rst experiment or its internal replication commented on

problems choosing superclass/class to use as a copy template or problems tracing through the

hierarchy.

The subject who took by far the longest time on the inheritance program group made several

tries at di�erent points in the hierarchy. If this subject's datum is excluded the average time for

the inheritance program group would almost match the average time for the at program group.

We have no reason to exclude this datum: the subject's behaviour is a particularly poignant

example of conceptual entropy.

To summarise:

1. Program size is discounted as a predictor of performance.

2. The inheritance program group working with a deeper inheritance hierarchy had a more

demanding search problem when choosing a superclass but that this alone does not account

for the relative deterioration in performances.

3. Conceptual entropy will arise when programmers are forced to create their own conceptual

models of the domain or if they are given a free choice between satisfying and optimising

strategies when specialising in an inheritance hierarchy.

4. Problems with tracing and virtual functions go some way toward explaining the deterio-

rations in performances.

5. The more demanding search problem and the problems with tracing and virtual functions,

together, probably explain the general relative deterioration in performances.

20



5 Threats to validity

5.1 Threats to internal validity

A major concern within any empirical study is that an unobserved independent variable is exert-

ing control over the dependent variable(s), a possibility which must be minimised. Three such

threats have been identi�ed: (i) selection e�ects, (ii) maturation e�ects, and (iii) instrumentation

e�ects.

1. Selection e�ects are due to natural variations in subject performance (see, e.g., [Bro80]).

An example of this is presented in [DBM+94] where the majority of `high ability' subjects

were randomly assigned to one of two groups, something which obviously biased the results

of the study. Such bias was catered for in this study by creating subject groups of equal

ability (as detailed in Sections 3.1.2 and 3.2).

2. Maturation or learning e�ects are caused by subjects learning as an experiment proceeds.

The threat here was that subjects would learn from the �rst run and that their performance

on the second run would be biased. The data was analysed for this and no signi�cant e�ect

was found.

3. Instrumentation e�ects may result from di�erences in the experimental materials employed.

In this study such e�ects were likely to arise from di�erences in the presented software

systems and maintenance tasks. Although an explicit attempt was made to ensure as

much similarity as possible, such variation can be di�cult to avoid. The collected timing

data for the �rst experiment are very similar across the two runs; the internal replication

repeated these results. This increases con�dence that any such e�ect was minimised. In-

strumentation e�ects also appear minimal between the replication and second experiment

| the increase of mean time for the inheritance group would have been similar for the at

group otherwise.

So there is no evidence suggesting that these threats to internal validity have impacted on the

results of the study.

5.2 Threats to external validity

The greater the external validity, the more the results of an empirical study can be generalised

to actual software engineering practice. Three threats to external validity have been identi�ed

which limit the ability to apply any such generalisation: (i) subject representativeness, (ii) the

size of the software systems used, and (iii) maintenance is a process, and only the implementation

phase of the process has been considered in these experiments.

21



1. The subjects who participated in the experiments may not be representative of software

professionals. Although the participants in the replication and second experiment were

a mixture of �nal year students and new graduate computer scientists and were classed

as more experienced programmers, they cannot be categorised as experienced software

professionals. For pragmatic considerations, having students as subjects was the only

viable option for the laboratory-based experiments.

2. The software systems used for the experiments were not large and may not be represen-

tative of real software systems. The inheritance depth used in these software systems is

representative of real inheritance hierarchies, however | see the characteristics of object-

oriented class hierarchies presented in [CK94]. Furthermore, it may be that to control and

isolate the e�ect of inheritance on the maintainability of object-oriented software, small

systems are required otherwise the e�ect may become too di�cult to detect. As noted by

Tiller, more control exerted over an experiment is gained only at the expense of its realism

[Til91] | an attempt to achieve as �ne a balance as possible was made.

3. Although maintainability of software is best evaluated with respect to the entire main-

tenance process, laboratory-based experimentation on such a scale is not practical; this

study has concentrated on the implementation phase of the maintenance process.

The �rst and second threats to external validity are common to many reported empirical studies,

e.g., [HHL90], [LHKS92], [PVB95]. It is argued there is justi�cation to conclude that because

the e�ect of inheritance has been consistently reported across the multi-method programme of

research [Dal96], there is less of a threat to external validity. To fully overcome these threats a

replication package is proposed as further work in order to allow other researchers to conduct

external replications using di�erent subjects, variables, and procedures (see [Cha88] for a detailed

discussion about making generalisations).

6 Conclusions

This empirical study should be of interest to those designing and maintaining object-oriented

software. The results suggest that when it is obvious which class should be used to specialise

from and when little tracing up through hierarchies is demanded, then inheritance provides

gains in modi�ability, i.e., object-oriented software is more maintainable than equivalent object-

based software. On the contrary, when conceptual entropy exists (when either the conceptual

model of the domain has not been not provided or other strategies for specialising have not

been speci�ed, e.g., `most in common') and when tracing up through hierarchies is required for

22



sound comprehension, then modi�ability gains are cancelled out, i.e., object-oriented software is

no more maintainable than object-based software. One of our subjects provided a particularly

poignant example of conceptual entropy by attempting specialisations at several points in the

hierarchy.

An interpretation based solely on our experimental hypotheses would be misleading. Deterio-

rating performances were not simply down to depth and increased tracing di�culties: conceptual

entropy also played a part and one could imagine shallow and broad hierarchies su�ering from

conceptual entropy as much as narrow and deep. So the inductive analysis was a vital component

of our research.

While threats to the external validity have been identi�ed, it is argued that because the

results have been con�rmed across a multi-method programme of research, these threats are

reduced. Subsequent experimentation, however, should make use of larger software systems

using professional programmers as subjects. Such experimentation might also consider other

categories of maintenance and other aspects of the overall maintenance process. It is not at all

obvious that object-oriented software is going to be more maintainable in the long run.

Acknowledgements

The authors wish to acknowledge the e�orts of those who participated in the experiments.

Thanks are extended to Pete Hendry and Dave Lloyd for their technical assistance.

References

[BCM94] A. Brooks, D. Clarke, and P. McGale. Investigating stellar variability by normality

tests. Vistas in Astronomy, 38:377{399, 1994.

[Bro80] R. Brooks. Studying programmer behavior experimentally: The problems of proper

methodology. Communications of the ACM, 23(4):207{213, April 1980.

[Bur95] A. Burgess. Finding an experimental basis for software engineering. IEEE Software,

28(3):92{93, 1995.

[CCKT83] J. Chambers, W. Cleveland, B. Kleiner, and P. Tukey. Graphical methods for data

analysis. Wadsworth International Group, �rst edition, 1983.

[Cha88] A. Chapanis. Some generalisations about generalisation. Human Factors, 30(3):253{

267, 1988.

23



[CK94] S. Chidamber and C. Kemerer. A metrics suite for object-oriented design. IEEE

Transactions on Software Engineering, 20(6):476{493, June 1994.

[Cur86] B. Curtis. By the way, did anyone study any real programmers? In E. Soloway

and S. Iyengar, editors, Empirical Studies of Programmers: First Workshop, pages

256{262. Ablex Publishing Corporation, 1986.

[CvM93] R. Crocker and A. von Mayrhauser. Maintenance support needs for object-oriented

software. In Proceedings of the International Computer Software and Applications

Conference, pages 63{69, November 1993.

[Dal96] J. Daly. Replication and a Multi-Method Approach to Empirical Software Engineer-

ing Research. PhD thesis, Department of Computer Science, University of Strath-

clyde, Glasgow, 1996.

[DBM+94] J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood. Veri�cation of results

in software maintenance through external replication. In Proceedings of the IEEE

International Conference on Software Maintenance, pages 50{57, September 1994.

[DBM+95] J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood. A multi-method approach

to performing empirical research. Software Engineering Technical Council (TCSE)

Newsletter, 14(1):SPN10{12, Fall 1995.

[DMB+95] J. Daly, J. Miller, A. Brooks, M. Roper, and M. Wood. Issues on the object-oriented

paradigm: A questionnaire survey. Research report EFoCS-8-95, Department of

Computer Science, University of Strathclyde, Glasgow, 1995.

[Dvo94] J. Dvorak. Conceptual entropy and its e�ect on class hierarchies. IEEE Computer,

27(6):59{63, June 1994.

[DWB+95] J. Daly, M. Wood, A. Brooks, J. Miller, and M. Roper. Structured interviews on the

object-oriented paradigm. Research report EFoCS-7-95, Department of Computer

Science, University of Strathclyde, Glasgow, 1995.

[Fos91] J. Foster. Program lifetime: A vital statistic for maintenance. In Proceedings of the

IEEE Conference on Software Maintenance, pages 98{103, 1991.

[HHL90] S. Henry, M. Humphrey, and J. Lewis. Evaluation of the maintainability of object-

oriented software. In IEEE Conference on Computer and Communication Systems,

pages 404{409, September 1990.

24



[JKZ94] P. J�uttner, S. Kolb, and P. Zimmerer. Integrating and testing of object-oriented

software. In Proceedings of the European Conference on Software Testing, Analysis,

and Review, pages 13/1{13/14. Siemens AG, 1994.

[Jon94] C. Jones. Gaps in the object-oriented paradigm. IEEE Computer, 27(6):90{91, June

1994.

[KGH+94] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and C. Chen. Change impact

identi�cation in object-oriented software maintenance. In Proceedings of the IEEE

International Conference on Software Maintenance, pages 202{211, September 1994.

[LHKS92] J. Lewis, S. Henry, D. Kafura, and R. Schulman. On the relationship between the

object-oriented paradigm and software reuse: An empirical investigation. Journal

of Object-Oriented Programming, 5(4):35{41, 1992.

[Lip90] Mark W. Lipsey. Design Sensitivity, Statistical Power for Experimental Research.

SAGE Publications, 1990.

[LMR92] M. Lejter, S. Meyers, and S. Reiss. Support for maintaining object-oriented pro-

grams. IEEE Transactions on Software Engineering, SE-18(12):1045{1052, Decem-

ber 1992.

[PB94] C. Ponder and B. Bush. Polymorphism considered harmful. ACM SIGSOFT, Soft-

ware Engineering Notes, 19(2):35{37, April 1994.

[PVB95] A. Porter, L. Votta, and V. Basili. Comparing detection methods for software

requirements inspections: A replicated experiment. IEEE Transactions on Software

Engineering, 21(6):563{575, June 1995.

[Rom87] H. D. Rombach. A controlled experiment on the impact of software structure on

maintainability. IEEE Transactions on Software Engineering, 13(3):344{354, March

1987.

[Sch87] N. Schneidewind. The state of software maintenance. IEEE Transactions on Soft-

ware Engineering, SE-13(3):303{310, 1987.

[Sch95] S. Schneberger. Software maintenance in distributed computer environments: Sys-

tem complexity versus component simplicity. In Proceedings of IEEE International

Conference on Software Maintenance, pages 304{313, 1995.

[Ski92] M. Skinner. The C++ primer: a gentle introduction to C++. Silicon Press and

Prentice Hall, �rst edition, 1992.

25



[SPL+88] E. Soloway, J. Pinto, S. Letovsky, D. Littman, and R. Lampert. Designing doc-

umentation to compensate for delocalized plans. Communications of the ACM,

31(11):1259{1267, 1988.

[Til91] D. Tiller. Experimental design and analysis. In N. Fenton, editor, Software Metrics

| A Rigorous Approach, pages 63{78. Chapman and Hall, 1991.

[WH92] N. Wilde and R. Huitt. Maintenance support for object-oriented programs. IEEE

Transactions on Software Engineering, SE-18(12):1038{1044, December 1992.

[WMH93] N. Wilde, P. Matthews, and R. Huitt. Maintaining object-oriented software. IEEE

Software, 10(1):75{80, 1993.

26


