Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Statistical power and its subcomponents - missing and misunderstood concepts in software engineering research

Miller, J. and Daly, J. and Wood, M. and Brooks, A. and Roper, M. (1997) Statistical power and its subcomponents - missing and misunderstood concepts in software engineering research. Information and Software Technology, 39 (4). pp. 285-295. ISSN 0950-5849

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Recently we have witnessed a welcomed increase in the amount of empirical evaluation of Software Engineering methods and concepts. It is hoped that this increase will lead to establishing Software Engineering as a well-defined subject with a sound scientifically proven underpinning rather than a topic based upon unsubstantiated theories and personal belief. For this to happen the empirical work must be of the highest standard. Unfortunately producing meaningful empirical evaluations is a highly hazardous activity, full of uncertainties and often unseen difficulties. Any researcher can overlook or neglect a seemingly innocuous factor, which in fact invalidates all of the work. More serious is that large sections of the community can overlook essential experimental design guidelines, which bring into question the validity of much of the work undertaken to date. In this paper, the authors address one such factor -- Statistical Power Analysis. It is believed, and will be demonstrated, that any body of research undertaken without considering statistical power as a fundamental design parameter is potentially fatally flawed. Unfortunately the authors are unaware of much Software Engineering research which takes this parameter into account. In addition to introducing Statistical Power, the paper will attempt to demonstrate the potential difficulties of applying it to the design of Software Engineering experiments and concludes with a discussion of what the authors believe is the most viable method of incorporating the evaluation of statistical power within the experimental design process.