Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Statistical power and its subcomponents - missing and misunderstood concepts in software engineering research

Miller, J. and Daly, J. and Wood, M. and Brooks, A. and Roper, M. (1997) Statistical power and its subcomponents - missing and misunderstood concepts in software engineering research. Information and Software Technology, 39 (4). pp. 285-295. ISSN 0950-5849

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Recently we have witnessed a welcomed increase in the amount of empirical evaluation of Software Engineering methods and concepts. It is hoped that this increase will lead to establishing Software Engineering as a well-defined subject with a sound scientifically proven underpinning rather than a topic based upon unsubstantiated theories and personal belief. For this to happen the empirical work must be of the highest standard. Unfortunately producing meaningful empirical evaluations is a highly hazardous activity, full of uncertainties and often unseen difficulties. Any researcher can overlook or neglect a seemingly innocuous factor, which in fact invalidates all of the work. More serious is that large sections of the community can overlook essential experimental design guidelines, which bring into question the validity of much of the work undertaken to date. In this paper, the authors address one such factor -- Statistical Power Analysis. It is believed, and will be demonstrated, that any body of research undertaken without considering statistical power as a fundamental design parameter is potentially fatally flawed. Unfortunately the authors are unaware of much Software Engineering research which takes this parameter into account. In addition to introducing Statistical Power, the paper will attempt to demonstrate the potential difficulties of applying it to the design of Software Engineering experiments and concludes with a discussion of what the authors believe is the most viable method of incorporating the evaluation of statistical power within the experimental design process.

Item type: Article
ID code: 2670
Keywords: empirical software, statistical power analysis, software engineering, design process, Electronic computers. Computer science, Software, Information Systems, Computer Science Applications
Subjects: Science > Mathematics > Electronic computers. Computer science
Department: Faculty of Science > Computer and Information Sciences > Computer Science
Faculty of Science > Computer and Information Sciences
Related URLs:
Depositing user: Strathprints Administrator
Date Deposited: 07 Mar 2007
Last modified: 04 Sep 2014 09:59
URI: http://strathprints.strath.ac.uk/id/eprint/2670

Actions (login required)

View Item