Picture of scraped petri dish

Scrape below the surface of Strathprints...

Explore world class Open Access research by researchers at the University of Strathclyde, a leading technological university.

Explore

Design and simulation of a similar to 390 GHz seventh harmonic gyrotron using a large orbit electron beam

Li, Fengping and He, W. and Cross, A.W. and Donaldson, C.R. and Zhang, Liang and Phelps, A.D.R. and , Faraday Partnership in High Power RF (Funder) and , Scottish Universities Physics Alliance (SUPA) (Funder) and , Overseas Research Students Awards Scheme (ORSAS) (Funder) and Ronald, Kevin (2010) Design and simulation of a similar to 390 GHz seventh harmonic gyrotron using a large orbit electron beam. Journal of Physics D: Applied Physics, 43 (15). p. 155204. ISSN 0022-3727

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A similar to 390 GHz harmonic gyrotron based on a cusp electron gun has been designed and numerically modelled. The gyrotron operates at the seventh harmonic of the electron cyclotron frequency with the beam interacting with a TE71 waveguide mode. Theoretical as well as numerical simulation results using the 3D particle-in-cell code MAGIC are presented. The cusp gun generated an axis-encircling, annular shaped electron beam of energy 40 keV, current 1.5 A with a velocity ratio alpha of 3. Smooth cylindrical waveguides have been studied as the interaction cavities and their cavity Q optimized for 390 GHz operation. In the simulations similar to 600W of output power at the design frequency has been demonstrated.