Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

An approach to determining shelf seawater composition by inversion of in situ inherent optical property measurements

Brown, IC. and Cunningham, Alexander and McKee, D. (2007) An approach to determining shelf seawater composition by inversion of in situ inherent optical property measurements. In: Oceans 2007 Europe International Conference, 2007-06-18 - 2007-06-21.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Measurement of inherent optical properties (IOPs) of seawater using an AC-9 dual-beam spectrophotometer has become routine on many oceanographic cruises. AC-9 data (a(AC9)(lambda), b(AC9)(lambda) and c(AC9)(lambda)) are frequently used in radiance transfer calculations of water leaving radiances, for use in remote sensing applications. There are at present, however, no generally accepted protocols for the inversion of in situ IOP spectra to obtain estimates of water composition. A model is presented to partition in situ IOP spectra between particulate and dissolved shelf seawater constituents using constituent-specific optical cross-sections. These partitioned IOP spectra are subsequently inverted, yielding estimates of optically significant constituent concentrations. The inversion of IOPs measured in situ enables the calculation of spatial and temporal variability in shelf seawater composition at greatly increased resolution when compared with traditional sample collection and analysis. On moorings, towed bodies and ferry-box systems, this data is greatly needed for validating remote sensing products and to provide information on shelf sea processes.